首页 | 本学科首页   官方微博 | 高级检索  
     检索      

SPG膜曝气-基因工程菌生物膜反应器处理阿特拉津废水研究
引用本文:刘春,龚鹏飞,肖太民,张明,年永嘉,杨景亮,张晶.SPG膜曝气-基因工程菌生物膜反应器处理阿特拉津废水研究[J].环境科学,2014,35(8):3018-3023.
作者姓名:刘春  龚鹏飞  肖太民  张明  年永嘉  杨景亮  张晶
作者单位:河北科技大学环境科学与工程学院, 河北省污染防治生物技术重点实验室, 石家庄 050018;河北科技大学环境科学与工程学院, 河北省污染防治生物技术重点实验室, 石家庄 050018;河北科技大学环境科学与工程学院, 河北省污染防治生物技术重点实验室, 石家庄 050018;河北科技大学环境科学与工程学院, 河北省污染防治生物技术重点实验室, 石家庄 050018;河北科技大学环境科学与工程学院, 河北省污染防治生物技术重点实验室, 石家庄 050018;河北科技大学环境科学与工程学院, 河北省污染防治生物技术重点实验室, 石家庄 050018;河北科技大学环境科学与工程学院, 河北省污染防治生物技术重点实验室, 石家庄 050018
基金项目:国家自然科学基金项目(51008111);河北省应用基础研究计划重点基础研究项目(11966726D)
摘    要:膜曝气-生物膜反应器(MABR)是一种新型的膜-生物废水处理工艺,在MABR中采用基因工程菌生物膜可以强化难降解污染物的生物去除.本研究在SPG膜表面形成基因工程菌生物膜,运行SPG膜曝气-生物膜反应器(SPG-MABR)处理阿特拉津废水,考察了气压、挂膜生物量和液体流速对SPG-MABR运行性能的影响,以及基因工程菌生物膜的变化.结果表明,提高气压可以增大透氧系数,从而提高阿特拉津和COD的去除速率以及复氧速率.提高挂膜生物量能够加快阿特拉津和COD的生物去除,但生物膜厚度增加使得氧传质阻力增大,复氧速率降低.层流状态下减小SPG-MABR中的液体流速,有利于污染物向生物膜扩散传质,从而提高污染物去除速率.气压为300 kPa、生物量为25 g·m-2、液体流速为0.05 m·s-1时,SPGMABR反应器对阿特拉津5 d的去除率可以达到98.6%.在SPG-MABR运行过程中,基因工程菌生物膜呈现微生物多态化趋势.生物膜表面逐渐被其他微生物细胞覆盖,基因工程菌分布减少,生物膜内部仍以基因工程菌细胞为主.

关 键 词:膜曝气-生物膜反应器  基因工程菌  SPG膜  阿特拉津  透氧系数
收稿时间:1/6/2014 12:00:00 AM
修稿时间:2014/3/11 0:00:00

Atrazine Wastewater Treatment in a SPG Membrane-Aerated Genetically Engineered Microorganism Biofilm Reactor
LIU Chun,GONG Peng-fei,XIAO Tai-min,ZHANG Ming,NIAN Yong-ji,YANG Jing-liang and ZHANG Jing.Atrazine Wastewater Treatment in a SPG Membrane-Aerated Genetically Engineered Microorganism Biofilm Reactor[J].Chinese Journal of Environmental Science,2014,35(8):3018-3023.
Authors:LIU Chun  GONG Peng-fei  XIAO Tai-min  ZHANG Ming  NIAN Yong-ji  YANG Jing-liang and ZHANG Jing
Institution:Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Abstract:Membrane-aerated biofilm reactor (MABR) represent a novel membrane-biological wastewater treatment technology. In addition, bioaugmented treatment using genetically engineered microorganism (GEM) biofilm in MABR is proposed to improve refractory pollutant removal. In the present study, a SPG membrane aerated-biofilm reactor (SPG-MABR) with GEM biofilm formed on the SPG membrane surface was applied to treat atrazine wastewater. The influences of air pressure, biofilm biomass and liquid velocity on the performance of the SPG-MABR were investigated. The variation of GEM biofilm during the SPG-MABR operation was observed. The results indicated that the increased air pressure could promote atrazine and COD removal as well as re-oxygenation by increasing oxygen permeability coefficient. A higher biofilm biomass could also enhance atrazine and COD removal, but simultaneously reduce the re-oxygenation rate because biofilm thickness and oxygen transfer resistance increased. When liquid velocity in the SPG-MABR was decreased under laminar flow condition, atrazine and COD removal was improved due to the facilitated contaminant diffusion from wastewater to biofilm. The atrazine removal efficiency reached to 98.6% in the SPG-MABR after 5d treatment at air pressure of 300 kPa, biofilm biomass of 25 g·m-2 and liquid velocity of 0.05 m·s-1. The microbial polymorphism of GEM biofilm was observed during the SPG-MABR operation. The surface of GEM biofilm was gradually covered by other microbial cells and the distribution of GEM cells reduced, but inside the GEM biofilm, the GEM cells were still dominant.
Keywords:membrane-aerated biofilm reactor  genetically engineered microorganism  SPG membrane  atrazine  oxygen permeability coefficient
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号