首页 | 本学科首页   官方微博 | 高级检索  
     检索      

东莞工业集中区夏季臭氧污染与非污染期间VOCs组分特征及其来源
引用本文:周振,肖林海,费蕾蕾,余纬,林满,黄筠钧,张智胜,陶俊.东莞工业集中区夏季臭氧污染与非污染期间VOCs组分特征及其来源[J].环境科学,2022,43(9):4497-4505.
作者姓名:周振  肖林海  费蕾蕾  余纬  林满  黄筠钧  张智胜  陶俊
作者单位:广东省东莞生态环境监测站, 东莞 523009;暨南大学环境与气候研究院, 广州 511443;生态环境部华南环境科学研究所, 广州 510655
基金项目:国家自然基金项目(41875160)
摘    要:为探讨东莞典型工业区夏季大气挥发性有机物(VOCs)污染特征及来源,于2020年夏季在厚街镇对大气环境中56种VOCs开展了在线观测,并同步收集了臭氧(O3)、氮氧化物(NOx)和一氧化碳(CO)等气体污染物浓度和气象因子等资料,在此基础上分析了VOCs总体积分数和主要物种体积分数特征,进一步估算了主要VOCs物种对臭氧生成潜势的贡献和不同臭氧浓度下VOCs的主要污染源贡献率.结果表明,观测期间56种VOCs的体积分数平均值为53.1×10-9,其中φ(芳香烃)、φ(烷烃)、φ(烯烃)和φ(炔烃)分别为24.7×10-9、23.7×10-9、3.9×10-9和0.7×10-9.与非臭氧污染期间相比,臭氧污染期间φ(芳香烃)、φ(烷烃)、φ(烯烃)和φ(炔烃)分别上升约10%、43%、38%和98%.无论是臭氧污染还是非臭氧污染期间,芳香烃对臭氧生成潜势的贡献率均最大,其次为烷烃、烯烃和炔烃.整个夏季观测期间,溶剂源、液化石油气泄漏、化石燃料燃烧源和油气挥发源对VOCs的贡献率分别为60%±20%、16%±11%、15%±11%和9%±6%;臭氧污染期间,溶剂源的贡献率下降到44%,而液化石油气泄漏和油气挥发源的贡献率分别上升到21%和16%.

关 键 词:在线监测  芳香烃  烷烃  臭氧生成潜势(OFP)  溶剂源
收稿时间:2021/11/28 0:00:00
修稿时间:2022/1/28 0:00:00

Characteristics and Source Apportionment of Volatile Organic Compounds (VOCs) in a Typical Industrial Area in Dongguan During Periods of Ozone and Non-ozone Pollution in Summer
ZHOU Zhen,XIAO Lin-hai,FEI Lei-lei,YU Wei,LIN Man,HUANG Jun-jun,ZHANG Zhi-sheng,TAO Jun.Characteristics and Source Apportionment of Volatile Organic Compounds (VOCs) in a Typical Industrial Area in Dongguan During Periods of Ozone and Non-ozone Pollution in Summer[J].Chinese Journal of Environmental Science,2022,43(9):4497-4505.
Authors:ZHOU Zhen  XIAO Lin-hai  FEI Lei-lei  YU Wei  LIN Man  HUANG Jun-jun  ZHANG Zhi-sheng  TAO Jun
Institution:Dongguan Ecology and Environment Monitoring Station of Guangdong Province, Dongguan 523009, China;Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China;South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
Abstract:To investigate the characteristics and sources of atmospheric volatile organic compounds (VOCs) in a typical industrial zone in Dongguan, 56 VOCs species were continuously measured in Houjie Town of Dongguan in summer of 2020. In addition, mass concentrations of O3, NOx, and CO and meteorological data were synchronously collected. Then, characteristics of total VOCs and major species, the contributions of major VOCs species to ozone formation potential (OFP), and source apportionment of VOCs under the different ozone concentrations were discussed. The mean mixing ratio of VOCs was 53.1×10-9 including aromatics (24.7×10-9), alkanes (23.7×10-9), alkenes (3.9×10-9), and alkynes (0.7×10-9). The mean mixing ratios of aromatics, alkanes, alkenes, and alkynes increased approximately 10%, 43%, 38%, and 98% during the period of ozone pollution, respectively, compared with those during the period of non-ozone pollution. Aromatics contributed the most to OFP during the periods of both ozone pollution and non-ozone pollution, followed by alkanes, alkenes, and alkynes. Solvent sources, liquefied petroleum gas (LPG) leakage, fossil fuel combustion, and hydrocarbon volatilization were resolved using the PMF model, which accounted for 60%±20%, 16%±11%, 15%±11%, and 9%±6% of total VOCs, respectively. During the period of ozone pollution, the contribution of solvent sources to the total VOCs decreased to 44%, whereas that of LPG leakage and hydrocarbon volatilization increased to 21% and 16%, respectively.
Keywords:online measurement  aromatics  alkane  ozone formation potential (OFP)  solvent source
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号