首页 | 本学科首页   官方微博 | 高级检索  
     检索      

不同类型城市人工湿地水体汞的分布特征
引用本文:樊宇飞,刘伟豪,孙涛,苑萌,吕东威,李先源,王永敏,王定勇.不同类型城市人工湿地水体汞的分布特征[J].环境科学,2019,40(5):2226-2233.
作者姓名:樊宇飞  刘伟豪  孙涛  苑萌  吕东威  李先源  王永敏  王定勇
作者单位:西南大学资源环境学院,重庆,400715;西南大学园艺园林学院,重庆,400715;西南大学资源环境学院,重庆400715;重庆市农业资源与环境研究重点实验室,重庆400716
基金项目:国家自然科学基金项目(41671469,41603103);国家大学生创新训练重点项目(201710635031)
摘    要:为了解城市人工湿地水体中汞的时空分布及甲基化特征,以便探究其潜在的汞暴露生态风险,在重庆市选择4个不同类型的人工湿地,于2017年3月~2018年3月,按季度采集垂直剖面水样,分析总汞(THg)和甲基汞(MeHg)的分布.结果表明:城市人工湿地由于景观布局、功能设置不同,其汞分布特征有一定差异. 4个湿地水体THg均高于背景水域,但远低于有污染历史的水体;湿地中部水体THg均略高于进、出水口,表明城市湿地对水体THg有截留作用.除彩云湖湿地出水口MeHg浓度高于入水口外,其余3个湿地出水口MeHg均低于入水口;湿地中水体MeHg呈随水深增加而升高的趋势,且MeHg占THg的比例(MeHg/THg)均高于其他水域,说明城市湿地具有净汞甲基化的作用. 4个城市湿地水体THg春秋两季高,夏季略有降低,冬季最低;水体MeHg冬季最低,而其他三季差异不大但远高于冬季,约为冬季的3倍.本研究明晰了城市湿地中汞的时空分布和甲基化规律,探究了人类活动对湿地的干扰程度和湿地的响应特征以及湿地汞对下游流域的影响,从控制潜在汞暴露风险的角度,为人工湿地建设提供建议.

关 键 词:人工湿地    甲基汞  甲基化  季节变化
收稿时间:2018/9/26 0:00:00
修稿时间:2018/11/12 0:00:00

Distribution Characteristics of Mercury in Different Urban Constructed Wetlands
FAN Yu-fei,LIU Wei-hao,SUN Tao,YUAN Meng,L&#; Dong-wei,LI Xian-yuan,WANG Yong-min and WANG Ding-yong.Distribution Characteristics of Mercury in Different Urban Constructed Wetlands[J].Chinese Journal of Environmental Science,2019,40(5):2226-2233.
Authors:FAN Yu-fei  LIU Wei-hao  SUN Tao  YUAN Meng  L&#; Dong-wei  LI Xian-yuan  WANG Yong-min and WANG Ding-yong
Institution:College of Resources and Environment, Southwest University, Chongqing 400715, China,College of Resources and Environment, Southwest University, Chongqing 400715, China,College of Resources and Environment, Southwest University, Chongqing 400715, China,College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China,College of Resources and Environment, Southwest University, Chongqing 400715, China,College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China,College of Resources and Environment, Southwest University, Chongqing 400715, China;Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China and College of Resources and Environment, Southwest University, Chongqing 400715, China;Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China
Abstract:To explore the spatial and temporal distribution and the methylation characteristics of mercury in different constructed wetlands in cities, and to understand the potential ecological exposure of mercury in urban wetlands, four artificial wetlands in Chongqing were studied from March 2017 to March 2018. The water samples were collected separately in four quarters, and the mass concentration of total mercury (THg) and methyl mercury (MeHg) was researched for one year. The results showed that the THg concentration in the four wetland waters is higher than the background value of the world''s lakes and reservoirs for dam construction, but it is far lower than the waters with pollution history. The THg mass concentration of the water inside the wetlands is slightly higher than in the inlet and outlet. In addition, the THg mass concentration in the aquatic plant growing area, the construction area, the cruise ship parking area, and the frequent play area has an increasing trend, indicating that urban wetlands have a trapping and converging effect of the water''s THg, so human activities influence total mercury a lot. The mass concentration of MeHg in the four wetland waters was slightly higher than that in other water bodies. With the exception of the Caiyun Lake, where the mass concentration of MeHg at the outlet was higher than that of the water inlet, the other three wetlands showed lower MeHg mass concentration in the outlet than the inlet. The mass concentration of MeHg in the wetland water increased with increasing water depth. The ratio of MeHg concentration to THg mass concentration (MeHg/THg) was higher than in other waters, indicating that urban wetlands have effect on net mercury methylation from waters. The photoreduction of mercury and its absorption by aquatic plants can reduce the mercury load from urban wetlands to downstream watersheds. The THg mass concentration of the four urban wetland water bodies was high in the spring and autumn, with a slight decrease in the summer, and lowest in the winter. The mass concentration of MeHg was the lowest in winter, and in the other three seasons it was basically flat, about three times higher than in winter. This study clarifies the temporal and spatial distribution and methylation of mercury in urban wetlands. It explores the degree of disturbance of human activities on wetlands and the response characteristics, as well as the impact of wetland mercury on downstream watersheds. To avoid potential mercury exposure, measures need to be established for the construction of artificial wetlands.
Keywords:constructed wetland  mercury  methlymercury  methylation  seasonal variation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号