首页 | 本学科首页   官方微博 | 高级检索  
     检索      

养殖塘CH4排放特征及其影响因素
引用本文:王娇,肖薇,张秀芳,张弥,张文庆,刘强,陈争,董保华,李旭辉.养殖塘CH4排放特征及其影响因素[J].环境科学,2019,40(12):5503-5514.
作者姓名:王娇  肖薇  张秀芳  张弥  张文庆  刘强  陈争  董保华  李旭辉
作者单位:耶鲁-南京信息工程大学大气环境中心,南京210044;南京信息工程大学气象灾害预报预警与评估协同创新中心,南京210044;耶鲁-南京信息工程大学大气环境中心,南京210044;南京信息工程大学无锡研究院,无锡214105;耶鲁-南京信息工程大学大气环境中心,南京210044;南京信息工程大学滨江学院,无锡214105;安徽省天长市气象局,天长,239300;耶鲁-南京信息工程大学大气环境中心,南京,210044
基金项目:国家自然科学基金项目(41575147)
摘    要:富营养化的养殖塘是重要的甲烷(CH_4)排放源.为明确养殖塘CH_4排放特征及其影响因素,本研究利用倒置漏斗法和体积扩散模型法,分别对安徽全椒两个养殖塘冬、春季CH_4冒泡通量和扩散通量进行了多日连续观测.结果表明,冬季CH_4冒泡通量白天高于夜间,夜间几乎为零;春季夜间高于白天.在季节尺度上,冬季CH_4冒泡通量显著低于春季,分别为3. 92mg·(m~2·d)-1和106. 94 mg·(m~2·d)-1;冬季CH_4扩散通量略高于春季,分别为2. 81 mg·(m~2·d)-1和0. 87 mg·(m~2·d)-1.自然因素(水温和气压)与CH_4冒泡通量和扩散通量显著相关.其中随水温的升高、气压的降低,CH_4冒泡通量分别呈指数递增和线性递增趋势.人工管理措施(冬季排水和春季施粪)会显著提高CH_4冒泡通量,但对扩散通量的影响并不显著.在冬季排水期间,水深与CH_4冒泡通量显著负相关;在春季鸡粪投放点,CH_4冒泡通量可高达1002. 30 mg·(m~2·d)-1.本研究可为评估小型养殖塘对全球碳循环的贡献提供数据支撑.

关 键 词:养殖塘  CH4冒泡通量  CH4扩散通量  自然因素  人工管理措施
收稿时间:2019/5/20 0:00:00
修稿时间:2019/7/19 0:00:00

Methane Emission Characteristics and Its Influencing Factors over Aquaculture Ponds
WANG Jiao,XIAO Wei,ZHANG Xiu-fang,ZHANG Mi,ZHANG Wen-qing,LIU Qiang,CHEN Zheng,DONG Bao-hua and LI Xu-hui.Methane Emission Characteristics and Its Influencing Factors over Aquaculture Ponds[J].Chinese Journal of Environmental Science,2019,40(12):5503-5514.
Authors:WANG Jiao  XIAO Wei  ZHANG Xiu-fang  ZHANG Mi  ZHANG Wen-qing  LIU Qiang  CHEN Zheng  DONG Bao-hua and LI Xu-hui
Institution:Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China,Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China,Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China;NUIST-Wuxi Research Institute, Wuxi 214105, China,Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China,Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China;Binjiang College of Nanjing University of Information Science & Technology, Wuxi 214105, China,Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China,Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China,Tianchang Meteorology Bureau of Anhui Province, Tianchang 239300, China and Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract:Eutrophic aquaculture ponds are important methane (CH4) sources. In order to quantify CH4 emission characteristics and its influencing factors over aquaculture ponds, we conducted several intensive observations over two ponds located in Quanjiao County, Anhui Province, in 2018. The ebullition and diffusion flux of CH4 were measured in two seasons (winter and spring) using the inverted-funnel and bulk diffusion model, respectively. In winter, the CH4 ebullition flux during the daytime was higher than that at night (almost zero), whereas the diurnal pattern was found to be reversed in spring. Seasonally, the CH4 ebullition flux over the ponds was significantly lower in winter3.92 mg·(m2·d)-1] than in spring106.94 mg·(m2·d)-1], while the diffusion flux in winter2.81 mg·(m2·d)-1] was slightly higher than in spring0.87 mg·(m2·d)-1]. The CH4 ebullition and diffusion flux can be significantly controlled by natural factors such as water temperature and air pressure. It was revealed that the CH4ebullition flux in the studied ponds increased exponentially with increasing water temperature, and increased linearly with decreasing air pressure. Furthermore, we found that artificial management measures (i.e., winter drainage and spring manure treatment) could significantly enhance the CH4 ebullition flux rather than diffusion flux. For instance, the CH4 ebullition flux was found to increase with water depth decrease during the winter drainage period, while in the spring, the CH4 ebullition flux could reach as high as 1002.30 mg·(m2·d)-1 with chicken manure applicated. This study can provide data support for assessing the contribution of small ponds to the global carbon cycle.
Keywords:aquaculture ponds  CH4 ebullition flux  CH4 diffusion flux  natural factors  artificial management measures
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号