首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于铁锰泥的除砷颗粒吸附剂制备及其比较
引用本文:曾辉平,于亚萍,吕赛赛,李冬,张杰.基于铁锰泥的除砷颗粒吸附剂制备及其比较[J].环境科学,2019,40(11):5002-5008.
作者姓名:曾辉平  于亚萍  吕赛赛  李冬  张杰
作者单位:北京工业大学水质科学与水环境恢复工程北京市重点实验室,北京,100124;北京市市政工程设计研究总院有限公司,北京,100082;北京工业大学水质科学与水环境恢复工程北京市重点实验室,北京 100124;哈尔滨工业大学城市水资源与水环境国家重点实验室,哈尔滨150090
基金项目:国家自然科学基金项目(51308009);北京市教委科技计划项目(KM201510005021)
摘    要:地下水除铁除锰滤池反冲洗铁锰泥具有良好的除砷效果,但因其粉末形态不易固液分离,本文采用高温烘焙法和包埋法以铁锰泥为原料制备颗粒吸附剂,其中包埋法采用烘干和冻干两种干燥方法制粒.结果表明,3种颗粒吸附剂:高温烘焙颗粒吸附剂(GA)、包埋烘干吸附剂(H-GA)和包埋冻干吸附剂(D-GA),表面粗糙,比表面积分别为43. 830、110. 30和129. 18 m~2·g~(-1).吸附实验表明,H-GA和D-GA对砷的吸附远大于GA,GA、H-GA和D-GA最大吸附量分别为5. 05、14. 95和13. 45 mg·g~(-1). Langmuir模型能更好地拟合H-GA和D-GA对砷的吸附,Freundlich模型更好地拟合GA的吸附过程,准一级动力学和准二级动力学模型均能拟合3种吸附剂的动力学数据.酸性环境更有利于砷的吸附.包埋法制备的颗粒吸附剂H-GA和D-GA保留了铁锰泥原始结构,比表面积也远大于GA,因此吸附效果比GA好.两种干燥方式烘干和冻干对吸附没有明显影响.

关 键 词:铁锰泥  壳聚糖  制粒    吸附
收稿时间:2019/4/25 0:00:00
修稿时间:2019/6/13 0:00:00

Preparation and Comparison of Arsenic Removal Granular Adsorbent Based on Iron-Manganese Sludge
Institution:Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China,Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China,Beijing General Municipal Engineering Design & Research Institute Co., Ltd., Beijing 100082, China,Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China and Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China;State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
Abstract:Backwashing sludge is an efficient adsorbent for arsenic removal. However, considering the practical application, it is unfavorable for solid-liquid separation. To overcome this disadvantage, a high-temperature baking method was used to prepare a granular adsorbent (GA) with iron-manganese sludge, along with an embedding method with drying (H-GA) and lyophilization (D-GA). The characterization results showed that the surface of the three adsorbents were rough, with specific surface areas of 43.830, 110.30, and 129.18 m2·g-1, respectively. The adsorption experiments showed that the adsorption of arsenic by H-GA and D-GA was much higher than that of GA. The maximum adsorption capacities of GA, H-GA, and D-GA were 5.05, 14.95, and 13.45 mg·g-1, respectively. The Langmuir model fit the adsorption process of arsenic by H-GA and D-GA better, whereas the Freundlich model fit the adsorption process of GA better. The Pseudo-first order model and Pseudo-second order model were suitable to describe the kinetic curves of the three adsorbents. The acidic environment was more conducive to the adsorption of arsenic. The particle adsorbents prepared by the embedding method, H-GA and D-GA, retained the original structure of iron-manganese sludge, and the specific surface area was much larger than that of GA; thus, the adsorption capacity was greater than that of GA. Drying and lyophilization had no significant effect on the adsorption performance of granular adsorbents prepared by embedding.
Keywords:iron-manganese sludge  chitosan  granulation  arsenic  adsorption
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号