首页 | 本学科首页   官方微博 | 高级检索  
     检索      

南京市黑碳气溶胶时间演变特征及其主要影响因素
引用本文:杨晓旻,施双双,张晨,王红磊,王振彬,朱彬.南京市黑碳气溶胶时间演变特征及其主要影响因素[J].环境科学,2020,41(2):620-629.
作者姓名:杨晓旻  施双双  张晨  王红磊  王振彬  朱彬
作者单位:南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶-云-降水重点开放实验室, 南京 210044,南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶-云-降水重点开放实验室, 南京 210044,南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶-云-降水重点开放实验室, 南京 210044,南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶-云-降水重点开放实验室, 南京 210044;北京大学环境模拟与污染控制国家重点联合实验室,环境科学与工程学院,北京 100871,南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶-云-降水重点开放实验室, 南京 210044,南京信息工程大学气象灾害预报预警与评估协同创新中心,中国气象局气溶胶-云-降水重点开放实验室, 南京 210044
基金项目:国家重点研发计划项目(2016YFA0602003);国家自然科学基金项目(41805096);江苏省自然科学基金项目(BK20180801);江苏省高等学校自然科学研究项目(18KJB170011);环境模拟与污染控制国家重点联合实验室专项(19K03ESPCP)
摘    要:为了研究南京市黑碳(black carbon,BC)气溶胶的时间演变特征及其主要影响因素,使用多波长Aethalometer(AE-33)每个季节选取典型月份观测了BC质量浓度,结合大气污染物数据、气象要素和边界层探测数据,分析了BC的季节变化、日变化、周末效应和来源特征.结果表明,南京的BC浓度具有明显的季节变化,春季(3351±919)ng·m-3] > 冬季(3234±2102)ng·m-3] > 秋季(3064±967)ng·m-3] > 夏季(2632±1705)ng·m-3].4个季节BC日变化均为双峰型分布,峰值分别位于06:00~08:00和21:00~23:00.BC不同季节的早晚高峰分布特征不同.早高峰春季BC浓度最高,晚高峰冬季浓度最高.冬季早高峰出现时间要比其他季节滞后2 h,而夏季晚高峰时间反而比其他季节提前2 h.风速对BC日变化季节分布差异的影响远大于相对湿度(relative humidity,RH).逆温层结对大气污染物浓度的影响机制比较复杂,在不同季节中逆温的高度、厚度和逆温强度对污染物的影响机制不同.BC不同季节的周末效应不同,风速对BC周末效应的影响较小,逆温层结差异是造成BC周末效应的主要原因.南京地区液体燃料燃烧对BC的贡献较大,固体燃烧对BC贡献较小.

关 键 词:黑碳气溶胶  时间变化  边界层结构  气象要素  来源解析
收稿时间:2019/5/31 0:00:00
修稿时间:2019/8/8 0:00:00

Temporal Evolution and Main Influencing Factors of Black Carbon Aerosol in Nanjing
YANG Xiao-min,SHI Shuang-shuang,ZHANG Chen,WANG Hong-lei,WANG Zhen-bin and ZHU Bin.Temporal Evolution and Main Influencing Factors of Black Carbon Aerosol in Nanjing[J].Chinese Journal of Environmental Science,2020,41(2):620-629.
Authors:YANG Xiao-min  SHI Shuang-shuang  ZHANG Chen  WANG Hong-lei  WANG Zhen-bin and ZHU Bin
Institution:Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science&Technology, Nanjing 210044, China,Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science&Technology, Nanjing 210044, China,Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science&Technology, Nanjing 210044, China,Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science&Technology, Nanjing 210044, China;State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China,Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science&Technology, Nanjing 210044, China and Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science&Technology, Nanjing 210044, China
Abstract:Temporal evolution of black carbon (BC) in Nanjing was studied along with its main influencing factors. The multi-wavelength aethalometer (AE-33) was used to select the typical month of each season to observe BC mass concentration, combined with atmospheric pollutant data, meteorological elements, and boundary layer detection data. Seasonal, daily, weekly trends, and source characteristics of BC were analyzed. The results showed that the BC concentration in Nanjing had obvious seasonal changes, which were higher in spring and winter, in the decreasing order:spring(3351±919) ng·m-3] > winter(3234±2102) ng·m-3] > in autumn(3064±967) ng·m-3] > summer(2632±1705) ng·m-3]. The diurnal changes in BC during the four seasons are bimodal, with peaks at 06:00-08:00 and 21:00-23:00. The morning and evening peak distribution characteristics of BC in different seasons are different. The peak concentration of BC was highest in the early morning peak spring and the highest in the late peak winter. The morning peak timing of winter is 2 h behind other seasons, while the summer peak timing is 2 h ahead of other seasons. The effect of the wind speed on the seasonal distribution of BC diurnal variation is significantly larger than that on RH. The mechanism of the influence of the inversion layer on the concentration of atmospheric pollutants is complicated. The effects of height, thickness, and temperature of the inversion layer on the pollutants are different in different seasons. Weekly BC effects vary seasonally. The effect of RH and wind speed on the weekly BC effect is small, and the difference in the inversion layer is the main reason behind it. Liquid fuel combustion in Nanjing has a greater contribution to BC, whereas solid combustion contributes by a lesser extent.
Keywords:black carbon aerosol  time variation  boundary layer structure  meteorological element  source apportionment
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号