首页 | 本学科首页   官方微博 | 高级检索  
     检索      

黄冈市大气挥发性有机物污染特征、来源及对臭氧生成的影响
引用本文:连世泽,邓萌杰,陈楠,王语嫣,陶卉婷,成海容.黄冈市大气挥发性有机物污染特征、来源及对臭氧生成的影响[J].环境科学,2023,44(10):5410-5417.
作者姓名:连世泽  邓萌杰  陈楠  王语嫣  陶卉婷  成海容
作者单位:武汉大学资源与环境科学学院, 武汉 430072;湖北省生态环境监测中心站, 武汉 430074
摘    要:基于黄冈市城区大气挥发性有机物(VOCs)离线采样数据和常规空气污染物、气象在线监测数据,分析了黄冈市大气VOC组分和体积分数特征,并利用正交矩阵因子分解(PMF)模型和耦合MCM机制的光化学反应箱式模型(PBM-MCM)分别分析了臭氧(O3)污染高发期VOCs的来源及臭氧生成敏感性.结果表明,φ(TVOCs)平均值为(21.57±3.13)×10-9,且呈现出冬春高、夏秋低的季节性特征,其中烷烃(49.9%)和烯烃(16.4%)的占比最大.PMF解析结果显示黄冈市大气VOCs主要来源为:燃料燃烧源(27.8%)、机动车排放源(19.9%)、溶剂使用源(15.7%)、工业卤代烃排放源(12.1%)、化工企业排放源(10.5%)、自然源(7.8%)和柴油车排放源(6.2%).在人为源中,溶剂使用、燃料燃烧和化工企业排放的VOCs对大气环境中O3生成的贡献较大,贡献了O3生成的60.9%,故对O3污染防控应优先管控这3种人为源.通过相对增量反应性(RIR)和经验动力学方法(EKMA)曲线分析,观测期间黄冈市O3生成处于VOCs控制区,且间/对-二甲苯、乙烯、1-丁烯和甲苯等VOCs对O3生成比较敏感,应重点削减以上VOCs的排放.

关 键 词:挥发性有机物(VOCs)  臭氧生成敏感性  PMF模型  相对增量反应性(RIR)  EKMA曲线
收稿时间:2022/11/1 0:00:00
修稿时间:2022/12/19 0:00:00

Characteristics, Sources, and Contributions to Ozone Formation of Ambient Volatile Organic Compounds in Huanggang, China
LIAN Shi-ze,DENG Meng-jie,CHEN Nan,WANG Yu-yan,TAO Hui-ting,CHENG Hai-rong.Characteristics, Sources, and Contributions to Ozone Formation of Ambient Volatile Organic Compounds in Huanggang, China[J].Chinese Journal of Environmental Science,2023,44(10):5410-5417.
Authors:LIAN Shi-ze  DENG Meng-jie  CHEN Nan  WANG Yu-yan  TAO Hui-ting  CHENG Hai-rong
Institution:School of Resource and Environment Science, Wuhan University, Wuhan 430072, China;Eco-Environment Monitoring Centre of Hubei Province, Wuhan 430074, China
Abstract:Based on the offline sampling data of volatile organic compounds (VOCs) and the simultaneous online measurements of conventional gaseous air pollutants and meteorological parameters in urban Huanggang, the volume fractions and component characteristics of VOCs were analyzed. The sources and ozone (O3) formation sensitivity of VOCs during severe ozone pollution episodes were analyzed using the positive matrix factorization (PMF) model and the photochemical box model coupled with master chemical mechanism (PBM-MCM), respectively. The results revealed that the average volume fractions of total volatile organic compounds were (21.57±3.13)×10-9, with higher volume fractions in winter and spring compared to those in summer and autumn. Among these, alkanes (49.9%) and alkenes (16.4%) accounted for the highest proportion. The PMF analysis results showed that fuel combustion (27.8%), vehicle emission (19.9%), solvent use (15.7%), industrial halogenated hydrocarbon emission (12.1%), chemical enterprise emission (10.5%), natural sources (7.8%), and diesel vehicle emission (6.2%) were the main sources of VOC emissions. Anthropogenic VOCs emitted by solvent use, fuel combustion, and chemical enterprises contributed significantly (60.9% in total) to generating O3, which indicates that these three types of anthropogenic sources should be controlled first when it comes to preventing and controlling ozone pollution. Further, the relative incremental reactivity (RIR) and empirical kinetic method approach (EKMA) revealed that O3 formation was in a VOCs-limited regime during the observation period in Huanggang, China. Furthermore, O3 formation was more sensitive to m-xylene, p-xylene, ethylene, 1-butene, and toluene; therefore, reducing these VOCs should be prioritized.
Keywords:volatile organic compounds (VOCs)  ozone formation sensitivities  PMF model  relative incremental reactivity (RIR)  EKMA curve
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号