首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes
Authors:Nasr Bensalah  Sondos Dbir  Ahmed Bedoui
Institution:1 Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar;2 Department of Chemistry, Faculty of Sciences of Gabes, University of Gabes, 6072, Zrig, Gabes, Tunisia
Abstract:In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤ 10 mA/cm2) and neutral medium (pH in the range 6–9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate.
Keywords:Electrolytic degradation  Diamond anode  Supporting electrolyte  Mediated oxidation  Cyanuric acid
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号