首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assessment of source water contamination by estrogenic disrupting compounds in China
Authors:Weiwei Jiang  Ye Yan  Mei M  Donghong Wang  Qian Luo  Zijian Wang and Senthil Kumaran Satyanarayanan
Institution:Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;Unit of Toxicology, Bharathiar University, Coimbatore 641046, India
Abstract:Detection of estrogenic disrupting compounds (EDCs) in drinking waters around China has led to rising concerns about health risks associated with these compounds. There is, however, a paucity of studies on the occurrence and identification of the main compounds responsible for this pollution in the source waters. To fill this void, we screened estrogenic activities of 23 source water samples from six main river systems in China, using a recombinant two-hybrid yeast assay. All sample extracts induced significant estrogenic activity, with E2 equivalents (EEQ) of raw water ranging from 0.08 to 2.40 ng/L. Additionally, 16 samples were selected for chemical analysis by gas chromatography-mass spectrometry. The EDCs of most concern, including estrone (E1), 17beta-estradiol (E2), 17alpha-ethinylestradiol (EE2), estriol (E3), diethylstilbestrol (DES), estradiol valerate (EV), 4-t-octylphenol (4-t-OP), 4-nonylphenols (4-NP) and bisphenol A (BPA), were determined at concentrations of up to 2.98, 1.07, 2.67, 4.37, 2.52, 1.96, 89.52, 280.19 and 710.65 ng/L, respectively. Causality analysis, involving comparison of EEQ values from yeast assay and chemical analysis identified E2, EE2 and 4-NP as the main responsible compounds, accounting for the whole estrogenic activities (39.74% to 96.68%). The proposed approach using both chemical analysis and yeast assay could be used for the identification and evaluation of EDCs in source waters of China.
Keywords:source water  estrogenic disrupting compounds  yeast assay  bioassay
本文献已被 ScienceDirect PubMed 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号