首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Human impact on current environmental state in Chinese lakes
Institution:1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Sino-Danish Centre for Education and Research (SDC), Beijing 100049, China;4. Department of Ecoscience, Aarhus University, Silkeborg 8600, Denmark;5. Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey;6. Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
Abstract:Anthropogenic and natural disturbance to inland aquatic ecosystems displays a notable spatial difference, yet data to measure these differences are scarce. This study encompasses 217 lakes distributed over five lake regions of China and elucidates the environmental factors determining the spatial variability of the water quality and trophic status. A significant correlation between human modification index in surrounding terrestrial systems (HMT) and trophic status of lake ecosystems (TSI) was found, and the regression slope in each region was similar except in the Qinghai-Tibet Plateau region. It was further noted that the pattern of environmental factor network (EF network) differed among freshwater and saline lakes. The EF network was complex for freshwater lakes in less human-influenced areas, but intensive man-made influence disrupted most relationships except for those between total nitrogen, total phosphorus, chlorophyll-a, and water turbidity. As for regions including saline lakes, correlations among water salinity and organic forms of carbon and nitrogen were apparent. Our results suggest that HMT and EF network can be useful indicators of the ecological integrity of local lake ecosystems, and integrating spatial information on a large scale provides conservation planners the option for evaluating the potential risk on inland aquatic systems.
Keywords:Corresponding author    Anthropogenic impact  Trophic state  Lake  Spatial patterns  Environmental management
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号