首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Production of ammonia from plasma-catalytic decomposition of urea: Effects of carrier gas composition
Authors:Xing Fan  Jian Li  Danqi Qiu  Tianle Zhu
Abstract:Effects of carrier gas composition(N_2/air) on NH_3 production, energy efficiency regarding NH_3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an Al_2 O_3-packed dielectric barrier discharge(DBD) reactor at room temperature. Results show that the presence of O_2 in the carrier gas accelerates the conversion of urea but leads to less generation of NH_3. The final yield of NH_3 in the gas phase decreased from 70.5%, 78.7%, 66.6% and 67.2% to 54.1%, 51.7%, 49.6% and 53.4% for applied voltages of 17, 19, 21 and 23 kV, respectively when air was used as the carrier gas instead of N_2.From the viewpoint of energy savings, however, air carrier gas is better than N_2 due to reduced energy consumption and increased energy efficiency for decomposition of a fixed amount of urea. Carrier gas composition has little influence on the major decomposition pathways of urea under the synergetic effects of plasma and Al_2 O_3 catalyst to give NH_3 and CO_2 as the main products. Compared to a small amount of N_2 O formed with N_2 as the carrier gas, however,more byproducts including N_2O and NO_2 in the gas phase and NH_4 NO_3 in solid deposits were produced with air as the carrier gas, probably due to the unproductive consumption of NH_3, the possible intermediate HNCO and even urea by the abundant active oxygen species and nitrogen oxides generated in air-DBD plasma.
Keywords:Ammonia production  Urea decomposition  Dielectric barrier discharge (DBD) plasma  2  Carrier gas composition
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号