首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Alternating nitrogen feeding strategy induced aerobic granulation: Influencing conditions and mechanism
Authors:Chunli Wan  Zhengwen Li  Yanggui Shen  Xiang Liu
Institution:1. Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China;2. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
Abstract:Effective cultivation of stable aerobic granular sludge (AGS) is a crucial step in the successful application of this technology, and the formation of AGS could be facilitated by some environmental stress conditions. Four identical sequencing batch reactors (SBRs) were established to investigate the aerobic granulation process under the same alternating ammonia nitrogen feeding strategy superimposed with different environmental conditions (inorganic carbon source, temperature, N/COD). Although various superimposed conditions induced a significant difference in the size, settling velocity, mechanic strength of AGS, mature aerobic granules could be successfully obtained in all four reactors after 70 days' operation, indicating the alternating ammonia nitrogen feeding strategy was the most critical factor for AGS formation. Based on the results of redundancy analysis, the presence of an inorganic carbon source could facilitate the cultivation of AGS with nitrification function, while the moderate temperature and fluctuant N/COD might benefit the cultivation of more stable AGS. In addition, superimposed stress conditions could result in the difference in the microbial population between four reactors, but the population diversity and abundance of microorganisms were not the determinants of AGS formation. This study provided an effective method for the cultivation of AGS by using alternating ammonia nitrogen feeding strategy.
Keywords:Corresponding author    Aerobic granule sludge  Granulation  Alternating nitrogen feeding  Cultivation
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号