首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The role of metal oxides on oxidant decay and disinfection byproduct formation in drinking waters: Relevance to distribution systems
Authors:Chao Liu
Institution:Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Abstract:Maintaining a residual disinfectant/oxidant (e.g., chlorine and chlorine dioxide), is a generally used strategy to control microbial contaminants and bacterial regrowth in distribution systems. Secondarily oxidant, such as hypobromous acid (HOBr), can be formed during chlorination of bromide-containing waters. The decay of oxidants and formation of disinfection byproducts (DBPs) due to the interaction between oxidants and selected metal oxides were studied. Selected metal oxides generally enhanced the decay of these halogen-containing oxidants via three pathways: (1) catalytic disproportionation to yield an oxidized form of halogen (i.e., halate) and reduced form (halide for chlorine and bromine or chlorite for chlorine dioxide), (2) oxygen formation, and (3) oxidation of a metal in a reduced form (e.g., cuprous oxide) to a higher oxidation state. Cupric oxide (CuO) and nickel oxide (NiO) showed significantly strong abilities for the first pathway, and oxygen formation was a side reaction. Cuprous oxide can react with oxidants via the third pathway, while goethite was not involved in these reactions. The ability of CuO on catalytic disproportionation of HOBr remained stable up to four cycles. In chlorination process, bromate formation tends to be important (exceeding 10 µg/L) when initial bromide concentration is above 400 µg/L in the presence of dissolved organic matter. Increasing initial bromide concentrations increased the formation of DBPs and calculated cytotoxicity, and the maximum was observed at pH 8.6 during chlorination process. Therefore, the possible disinfectant loss and DBP formation should be carefully considered in drinking water distribution systems.
Keywords:Cupric oxide  Disproportionation  Bromine  Bromate  Chlorine dioxide  Chlorate
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号