首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes
Authors:Jinlong Yan  Tao Jiang  Ying Yao  Song Lu  Qilei Wang  Shiqiang Wei
Institution:1 Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Department of Environmental Science and Engineering, Southwest University, Chongqing 400716, China;2 Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå SE-90183, Sweden;3 School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract:Iron oxide (FeO) coated by natural organic matter (NOM) is ubiquitous. The associations of minerals with organic matter (OM) significantly changes their surface properties and reactivity, and thus affect the environmental fate of pollutants, including nutrients (e.g., phosphorus (P)). In this study, ferrihydrite/goethite-humic acid (FH/GE–HA) complexes were prepared and their adsorption characteristics on P at various pH and ionic strength were investigated. The results indicated that the FeO–OM complexes showed a decreased P adsorption capacity in comparison with bare FeO. The maximum adsorption capacity (Qmax) decreased in the order of FH (22.17 mg/g) > FH-HA (5.43 mg/g) > GE (4.67 mg/g) > GE-HA (3.27 mg/g). After coating with HA, the amorphous FH–HA complex still showed higher P adsorption than the crystalline GE–HA complex. The decreased P adsorption observed might be attributed to changes of the FeO surface charges caused by OM association. The dependence of P adsorption on the specific surface area of adsorbents suggests that the FeO component in the complexes is still the main contributor for the adsorption surfaces. The P adsorptions on FeO–HA complexes decreased with increasing initial pH or decreasing initial ionic strength. A strong dependence of P adsorption on ionic strength and pH may demonstrate that outer-sphere complexes between the OM component on the surface and P possibly coexist with inner-sphere surface complexes between the FeO component and P. Therefore, previous over-emphasis on the contributions of original minerals to P immobilization possibly over-estimates the P loading capacity of soils, especially in humic-rich areas.
Keywords:Phosphorus  Ferrihydrite&ndash  humic acid complex  Goethite&ndash  humic acid complex  Adsorption
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号