首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microsite-limited recruitment controls fern colonization of post-agricultural forests
Authors:Flinn Kathryn M
Institution:Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA. kathryn.flinn@mail.mcgill.ca
Abstract:Assessing the relative roles of dispersal limitation and environmental effects in population dynamics and community assembly is fundamental to understanding patterns of species distribution and diversity. In forests growing on abandoned agricultural lands, both legacies of vegetation disturbance and changes in the abiotic environment shape the diversity and composition of recovering communities. Here I specify how interactions among historical, environmental, and biological factors influence species distributions, focusing on three fern species with contrasting distributions across forests of different history in central New York, USA: Dryopteris carthusiana, Dryopteris intermedia, and Polystichum acrostichoides. Using population surveys, spore-trap and spore-bank studies, and a three-year field experiment, I compare demographic rates among species and between forest types to determine which life history stages limit colonization and which traits explain species distributions. Adult plants of all three species were larger and more likely to produce spores in post-agricultural forests than in adjacent, uncleared stands. Though lower population densities led to fewer spores in post-agricultural soils, spore availability still exceeded recruitment by four to five orders of magnitude. Sowing additional spores had relatively little effect, while microhabitat conditions had the greatest impact on establishment rates. Given similar microsites, the two forest types had equal rates of establishment, but some forest-floor features preferentially occupied by juvenile plants were less frequent in post-agricultural stands. The availability of suitable sites for establishment, created by small-scale heterogeneity on forest floors, thus limits both the growth of fern populations and the colonization of new habitats. In fact, reduced microtopographic variation in post-agricultural forests may represent a greater hindrance to plant establishment than changes in mean environmental conditions. Among the three fern species, establishment rates differed as species distributions would predict, with the strongest colonizer consistently having the highest rates and the slowest colonizer the lowest. Rather than random or trait-mediated dispersal, the different distributions of these species reflect life history traits that determine establishment rates and thus colonization ability. This case study demonstrates that ecological interactions based on the unique life histories of individual species can override dispersal in determining species distributions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号