首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Integrating soil carbon cycling with that of nitrogen and phosphorus in the watershed model SWAT: Theory and model testing
Authors:Armen R Kemanian  Stefan Julich  Valipuram S ManoranjanJeffrey R Arnold
Institution:a Department of Crop and Soil Sciences, The Pennsylvania State University, 116 ASI Building, University Park, PA 16802-3504, United States
b Institute of Landscape Ecology and Resources Management, Justus-Liebig-Universität Gießen, Germany
c Department of Mathematics, Washington State University, 208 Morrill Hall, Pullman, WA 99164-3520, United States
d Grassland Soil and Water Research Laboratory, United States Department of Agriculture - Agricultural Research Service, 808 E. Blackland Road, Temple, TX 76502, United States
Abstract:In this paper we describe and test a sub-model that integrates the cycling of carbon (C), nitrogen (N) and phosphorus (P) in the Soil Water Assessment Tool (SWAT) watershed model. The core of the sub-model is a multi-layer, one-pool soil organic carbon (SC) algorithm, in which the decomposition rate of SC and input rate to SC (through decomposition and humification of residues) depend on the current size of SC. The organic N and P fluxes are coupled to that of C and depend on the available mineral N and P, and the C:N and N:P ratios of the decomposing pools. Tillage explicitly affects the soil organic matter turnover rate through tool-specific coefficients. Unlike most models, the turnover of soil organic matter does not follow first order kinetics. Each soil layer has a specific maximum capacity to accumulate C or C saturation (Sx) that depends on texture and controls the turnover rate. It is shown in an analytical solution that Sx is a parameter with major influence in the model C dynamics. Testing with a 65-yr data set from the dryland wheat growing region in Oregon shows that the model adequately simulates the SC dynamics in the topsoil (top 0.3 m) for three different treatments. Three key model parameters, the optimal decomposition and humification rates and a factor controlling the effect of soil moisture and temperature on the decomposition rate, showed low uncertainty as determined by generalized likelihood uncertainty estimation. Nonetheless, the parameter set that provided accurate simulations in the topsoil tended to overestimate SC in the subsoil, suggesting that a mechanism that expresses at depth might not be represented in the current sub-model structure. The explicit integration of C, N, and P fluxes allows for a more cohesive simulation of nutrient cycling in the SWAT model. The sub-model has to be tested in forestland and rangeland in addition to agricultural land, and in diverse soils with extreme properties such high or low pH, an organic horizon, or volcanic soils.
Keywords:C  carbon  d  index of agreement  fE  combined effect of soil temperature  moisture  and aeration on soil organic matter  residue  and manure decomposition  fO  aeration factor controlling soil organic matter  residue  and manure decomposition  fT  temperature factor controlling soil organic matter  residue  and manure decomposition  fW  moisture factor controlling soil organic matter  residue  and manure decomposition  fp  power factor that affects fE  fcm  cumulative fmix  fmix  mixing coefficient associated to different tillage tools  ftool  tillage factor controlling soil organic matter decomposition rate  GLUE  generalized likelihood uncertainty estimation  h  humification  hR  hM  humification coefficient of residue and manure  hx  maximum humification coefficient for a given soil texture  HRU  hydrologic response unit  IRC  IMC input of organic C through residue and manure  k  maximum apparent soil organic matter decomposition rate multiplied by fE and ftool  kM  optimum manure decomposition rate  kR  optimum residue decomposition rate  kS  apparent soil organic matter decomposition rate  kx  maximum apparent soil organic matter decomposition rate  MC  MN  MP  manure organic C  N  and P mass  MCN  MCP  manure C:N and C:P ratios  MINMN  net mineralization rates from decomposing manure  MINRN  net mineralization rates from decomposing residues  N  nitrogen  Nmin  mineral N in the soil layer  P  phosphorus  RC  RN  RP  residue organic C  N  and P mass  RCN  RCP  residue C:N and C:P ratios  SC  SN  SP  soil organic carbon C  N  and P mass  Sx  reference or saturation soil organic C mass  SCN  SCP  soil organic C:N and C:P ratios  SOM  soil organic matter  SWAT  Soil Water Assessment Tool  Zl  soil layer thickness
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号