首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Embryogenesis of decapod crustaceans with different life history traits,feeding ecologies and habitats: a fatty acid approach
Authors:R Rosa  R Calado  L Narciso  M L Nunes
Institution:1.Biological Sciences Center,University of Rhode Island,Kingston,USA;2.Departamento de Biologia Animal, Faculdade de Ciências da, Universidade de Lisboa,Laboratório Marítimo da Guia,Cascais,Portugal;3.Departamento de Inova??o Tecnológica e Valoriza??o dos Produtos da Pesca,IPIMAR,Lisboa,Portugal
Abstract:Variations in embryo size and fatty acid (FA) dynamics during embryogenesis were evaluated in deep-sea pandalids and portunid swimming crabs from the Portuguese continental margin and Madeira Island slope and compared with previous data on neritic and deep-sea lobsters and shrimps (collected between February 2001 and March 2004). Inter-specific variations in embryo size seem to be dictated primarily by phylogeny rather than by differences in reproductive or early life history traits. FA reserves were significantly correlated with embryo size (P < 0.001). Principal component analysis revealed differences among three groups (1—neritic caridean shrimps, 2—deep-sea pandalids of the genus Plesionika, and lobsters, 3—portunid crabs and the deep-sea pandalid Chlorotocus crassicornis, Costa 1871). Group 1 was clearly separated by PC1 mainly due to the higher percentage of essential C18 (linoleic and linolenic acids) and C20 (namely eicosapentaenoic) polyunsaturated FA (specific markers of primary producers). PC2 separated Group 2 from Group 3 due to differences in the percentage of several saturated FA (including odd-numbered FA—bacterial markers) and C18 monounsaturated FA (namely 18:1n − 9, a general marker of carnivory). Therefore, these differences among groups seem to result from distinctions in diet and ecological niche. Intra-specific differences in FA composition between western and southern Plesionika martia martia (A. Milne-Edwards, 1883) populations may reflect higher water temperatures on the south sub-tropical coast. Lobster embryonic development was more demanding of lipid energy than that of the other decapod species, which may reflect an evolutionary trend in decapod taxa related to an increasing degree of lecithotrophy. However, a lower FA catabolism can be interpreted as an enhanced independence of the newly hatched larvae from external energy sources. Higher FA content at hatching and, as a consequence, a greater independence from the external environment should increase the chances of larval survival. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号