首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Doubly uniparental transmission of mitochondrial DNA length variants in the mussel <Emphasis Type="Italic">Mytilus</Emphasis><Emphasis Type="Italic">trossulus</Emphasis>
Authors:M Zbawicka  D Skibinski  R Wenne
Institution:1.Institute of Oceanology, Polish Academy of Sciences, ul. Sw. Wojciecha 5, 81-347 Gdynia, Poland,;2.School of Biological Sciences, University of Wales, Swansea SA2 8PP, Wales, UK,
Abstract:Doubly uniparental inheritance of mitochondrial DNA (mtDNA) is an unusual feature found in marine mussels and a few other bivalve species. In addition to a mitochondrial genome (F) inherited through the female line, heteroplasmic individuals (males) contain a second highly diverged genome (M) that is inherited through the paternal line. The Baltic mussel Mytilus trossulus is characterized by the presence of two phylogenetically close female and male genomes. We examined M. trossulus sampled from the Gulf of Gdansk, southern Baltic. Somatic tissues and gametes were surveyed for the presence of different types of mtDNA. Length variants were identified using PCR (polymerase chain reaction) amplification of the mtDNA fragment containing the major noncoding region. Seventeen length variants present in homo- and heteroplasmic individuals were found in a sample of 343 individuals analyzed. Two length variants of the major noncoding region (PCR product lengths: 1520 and 1370 bp) were the most frequent. Length heteroplasmy was found in 46.8% of males, and was mostly caused by the presence of the short length variant (PCR product length: 1370 bp) of the major noncoding region. MtDNA variants were also detected by restriction analysis of a 1.3 kb segment of coding region (ND2-COIII) amplified by PCR. This study provides evidence that the short length variant is always transmitted to sperm and has taken over the role of the M genome. The remaining length variants were present in both males and females. Longer length variants were transmitted mainly through the female line. A possibility of much higher incidence of genome role reversals in Baltic M. trossulus, in comparison with other populations of mussels is discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号