首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Growth and grazing responses of Chrysochromulina ericina (Prymnesiophyceae): the role of irradiance, prey concentration and pH
Authors:P J Hansen  M Hjorth
Institution:1. Marine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, 3000, Helsing?r, Denmark
Abstract:The effect of irradiance, prey concentration and pH on the growth and grazing responses of the mixotrophic prymnesiophyte Chrysochromulina ericina under N-and P-replete conditions was studied using the pedinophyte Marsupiomonas pelliculata as prey. The two organisms were inoculated in monocultures and in mixed cultures at different predator: prey ratios at three irradiances and allowed to grow for 4–7 days. All cultures were non-axenic. Algal densities and pH were monitored throughout the experiments and growth and grazing rates were measured. An increase in growth of C. ericina cultures at irradiances of 25 and 70 μmol photons m−2 s−1 was observed after the addition of prey, while growth of C. ericina cultures at the high irradiance (150 μmol photons m−2 s−1) was unaffected by the addition of prey. However, although the growth of C. ericina increased at low irradiance (25 μmol photons m−2 s−1), it did not reach the same level as monocultures at the high irradiance (150 μmol photons m−2 s−1), suggesting that phagotrophy can only partly replace photosynthesis in C. ericina. Maximum growth rates of C. ericina at irradiances of 25 and 70 μmol photons m−2 s−1 were obtained at concentrations of > 0.15–0.3×105 M. pelliculata ml−1, corresponding to 50–100 μg C 1−1. Ingestion of M. pelliculata cells by C. ericina did not generally follow Michaelis—Menten kinetics. Deviation from the expected saturation kinetics was especially pronounced at irradiances of 70 and 150 μmol photons m−2 s−1. At these irradiances ingestion of M. pelliculata cells by C. ericina decreased at high concentrations of M. pelliculata, indicating an increased uptake of bacterial prey in these cultures. The growth rate of C. ericina was affected in both monocultures and in mixed cultures when pH increased above 8.6, and growth stopped around pH 9. The prey alga M. pelliculata tolerated high pH better and, consequently, took over in the mixed cultures when pH exceeded 9. The ecological significance of mixotrophy in the genus Chrysochromulina is discussed. Published online: 4 July 2002
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号