首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High recovery of culturable bacteria from the surfaces of marine algae
Authors:P R Jensen  C A Kauffman  W Fenical
Institution:(1) Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, 92093 La Jolla, California, USA
Abstract:The culturability of heterotrophic marine bacteria obtained from the surfaces of two species of marine algae (Lobophora variegata andHalimeda copiosa) was assessed by comparing total DAPI-stained cell counts to colony-forming bacterial counts on two agar media. The colony-forming bacterial counts on a low-nutrient medium (LN) consisting of seawater and agar were significantly greater for both algal species than counts obtained on a high-nutrient medium (HN) similar in composition to that typically used for the isolation of heterotrophic marine bacteria. On average, 14 and 58%, respectively, of the total bacteria fromL. variegata andH. copiosa were culturable on LN. These recovery rates far exceed those typically reported for marine bacteria. Of 119 LN strains obtained in pure culture, 55% failed to grow on HN. The yeast extract component of HN (1.5 gl-1) was responsible for the majority of the observed inhibition, suggesting that this nutrient can be highly toxic to marine bacteria. Eighty-nine percent of the strains inhibited by HN were capable of growth when the nutrients in this medium were diluted by a factor of 100 with seawater. Of 66 epiphytic strains, 30 (45%) initially inhibited by HN showed the ability to adapt to this medium after a period of laboratory handling. The initial inability of low-nutrient-adapted bacteria to grow on high-nutrient media may be due to nutrient shock. The results presented here indicate that the culturability of specific populations of marine bacteria can be dramatically improved by the use of low-nutrient media. Further, the importance of developing new medium formulations that eliminate traditional nutrients, some of which are clearly toxic to bacteria, is demonstrated.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号