首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of the juvenile hormone mimic ZR-512 (Altozar®) on larval development of the mud-crab Rhithropanopeus harrisii at various cyclic temperatures
Authors:M E Christiansen  J D Costlow Jr  R J Monroe
Institution:(1) Zoological Museum, University of Oslo, Oslo, Norway;(2) Duke University Marine Laboratory, Beaufort, North Carolina, USA;(3) Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
Abstract:Effects of the juvenile hormone (JH) mimic hydroprene (Altozar®: ZR-512), which exhibits high activity against Lepidoptera, were studied on the larval development of the mud-crab Rhithropanopeus harrisii (Gould) (Brachyura: Xanthidae). Larvae reared in 20permil S at 3 cycles of temperature of 20° to 25°C, 25° to 30°C and 30° to 35°C, were exposed to 0.01, 0.1 and 0.5 ppm hydroprene from hatching to the first crab stage. Larvae were also exposed to 0.1 and 0.5 ppm hydroprene only from the megalopa stage to the first crab stage. When larvae were treated with hydroprene throughout larval life, survival was significantly reduced with increasing concentrations of the compound at all temperature cycles. Synergistic effect between hydroprene and temperature on survival of zoeal larvae was not observed. On the average there was 11% less survival in the zoeal stages at the 0.01 ppm concentration. of hydroprene than in the control, an additional reduction of 13% occurred at 0.1 ppm, and finally there was a further decrease of 46% at 0.5 ppm hydroprene. Significant decrease in survival in the megalopa stage occurred only in the 0.5 ppm concentration of hydroprene at the lowest temperature cycle when larvae were exposed to the compound from hatching. When larvae were treated with hydroprene only within the megalopa stage, a significant reduction in survival was not observed. First-stage zoeae were the most sensitive of the larval stages to hydroprene. Duration of zoeal development was significantly delayed at 0.5 ppm hydroprene at the two lower temperature cycles, whereas in the megalopa stage the delay began at the 0.1 ppm level at all 3 temperature cycles when larvae were exposed to hydroprene from hatching. A significant delay was also observed at 0.1 ppm hydroprene at the two lower cycles when larvae were exposed to hydroprene only in the megalopa stage; at 30° to 35°C a significant delay was observed only at the 0.5 ppm level. The results show that metamorphosis to the first crab stage was not inhibited at the 0.5 ppm level of hydroprene or lower. Reduction in survival and increase in duration of larval development were presumably related to stress conditions caused by hydroprene. The results also suggest an interaction between temperature and hydroprene on survival of megalopa larvae and duration of larval development.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号