首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enzyme activities of fish skeletal muscle and brain as influenced by depth of occurrence and habits of feeding and locomotion
Authors:K M Sullivan  G N Somero
Institution:(1) Scripps Institution of Oceanography, University of California, San Diego, 92093 La Jolla, California, USA
Abstract:Activities of lactate dehydrogenase (LDH), pyruvate kinase (PK), malate dehydrogenase (MDH) and citrate synthase (CS) were measured in the white skeletal muscle of marine fishes having different depths of occurrence and different feeding and locomotory strategies. There were significant depth-related differences in the two glycolytic enzymes, LDH and PK. LDH activity was most variable, and differed by 3 orders of magnitude between the most active shallow-living species and certain deep-sea fishes likely to have only minimal capacities for active locomotion. Superimposed on the depth-related patterns was a high degree of interspecific variation (up to 20-fold) in enzymic activity among species from any given range of depth of occurrence. Variation of both LDH and PK activities, noted for shallow- and deep-living fishes, seems to be largely accounted for by differences in feeding habits and locomotory performance. Active pelagic swimmers have much higher activities of LDH and PK than, for example, deep-living sit-and-wait predators. Benthopelagic fishes like rattails and the sablefish have the highest activities found among deep-living fishes, suggesting that these species engage in relatively active food-searching behavior compared to most other deep-sea fishes. The activity of CS, an enzyme of the citric acid cycle and an indicator of aerobic metabolism, varied little among species. Thus, the large interspecific variation in glycolytic potential (LDH and PK) among species is not associated with a similar variation in aerobic metabolism of white muscle. The much higher and more variable activity of MDH relative to CS suggests that, in addition to its function in the citric acid cycle, MDH may play an important role in redox balance in fish white muscle. In a comparison of white muscle composition between the shallow- and deep-living species, water content did not differ significantly, but protein content was significantly higher in shallow- than in deep-living fishes (211 and 130 mg g-1 wet wt of muscle, respectively). The differences in muscle protein content are small relative to the differences between shallow- and deep-living species in LDH, PK and MDH activities. Thus, depthrelated differences in muscle enzymic activity are caused by factors other than enzyme dilution. Enzyme activities (LDH, PK and CS) in brain tissue were relatively constant among species regardless of depth of occurrence or feeding and locomotory habits. Habitat and lifestyle do not seem to influence the demands for overall metabolic function in brain. The utility of muscle enzymic activity data for making predictions about the ecological characteristics of difficult-to-observe, deep-living, fishes is discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号