首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Long-term dynamics of biotic and abiotic resistance to exotic species invasion in restored vernal pool plant communities
Authors:Collinge Sharon K  Ray Chris  Gerhardt Fritz
Institution:Department of Ecology and Evolutionary Biology, 334 UCB, N122 Ramaley, University of Colorado, Boulder, Colorado 80309-0334, USA. sharon.collinge@acolorado.edu
Abstract:Invasion of native ecosystems by exotic species can seriously threaten native biodiversity, alter ecosystem function, and inhibit conservation. Moreover, restoration of native plant communities is often impeded by competition from exotic species. Exotic species invasion may be limited by unfavorable abiotic conditions and by competition with native species, but the relative importance of biotic and abiotic factors remains controversial and may vary during the invasion process. We used a long-term experiment involving restored vernal pool plant communities to characterize the temporal dynamics of exotic species invasion, and to evaluate the relative support for biotic and abiotic factors affecting invasion resistance. Experimental pools (n=256) were divided among controls and several seeding treatments. In most treatments, native vernal pool species were initially more abundant than exotic species, and pools that initially received more native seeds exhibited lower frequencies of exotic species over time. However, even densely seeded pools were eventually dominated by exotic species, following extreme climatic events that reduced both native and exotic plant densities across the study site. By the sixth year of the experiment, most pools supported more exotics than native vernal pool species, regardless of seeding treatment or pool depth. Although deeper pools were less invaded by exotic species, two exotics (Hordeum marinum and Lolium multiflorum) were able to colonize deeper pools as soon as the cover of native species was reduced by climatic extremes. Based on an information-theoretic analysis, the best model of invasion resistance included a nonlinear effect of seeding treatment and both linear and nonlinear effects of pool depth. Pool depth received more support as a predictor of invasion resistance, but seeding intensity was also strongly supported in multivariate models of invasion, and was the best predictor of resistance to invasion by H. marinum and L. multilorum. We conclude that extreme climatic events can facilitate exotic species invasions by both reducing abiotic constraints and weakening biotic resistance to invasion.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号