首页 | 本学科首页   官方微博 | 高级检索  
     检索      

防污漆中活性物质海洋环境风险评估关键技术探讨
引用本文:梅承芳,陈进林,田亚静,梁燕珍,梁慧君,马连营,孙国萍,许玫英,栾天罡,曾国驱.防污漆中活性物质海洋环境风险评估关键技术探讨[J].生态毒理学报,2015,10(1):66-80.
作者姓名:梅承芳  陈进林  田亚静  梁燕珍  梁慧君  马连营  孙国萍  许玫英  栾天罡  曾国驱
作者单位:1. 广东省微生物研究所广东省菌种保藏与应用重点实验室,广州510070;省部共建华南应用微生物国家重点实验室,广州510070;中山大学生命科学学院水产品安全教育部重点实验室,广州510275;2. 广东省微生物研究所广东省菌种保藏与应用重点实验室,广州510070;省部共建华南应用微生物国家重点实验室,广州510070;3. 环境保护部环境保护对外合作中心,北京,100035;4. 佛山市环境健康与安全评价研究中心,佛山,528000;5. 中山大学生命科学学院水产品安全教育部重点实验室,广州,510275
基金项目:全球环境基金(GEF)中国用于防污漆生产的滴滴涕替代项目之环境保护领域化学品管理防污漆活性物质环境风险评估机构能力建设子项目;广东省海洋经济创新发展区域示范专项(No GD2012-D01-002)
摘    要:防污漆中的活性物质对海洋生态环境和人类健康造成的潜在风险受到日益广泛的关注,一些发达国家已建立了针对活性物质海洋环境风险评估的技术体系,但我国相关研究目前尚属空白。综述了防污漆活性物质海洋环境风险评估的研究背景、相关法规、技术标准和发展现状,针对环境风险评估的2个重要组成部分(危害性评估和暴露评估)中的关键技术进行了探讨。在危害性评估中,重点分析和比较了受试生物物种的选择原则、生态毒理数据的要求以及预测无效应浓度的推导方法和应用范围;在暴露评估中,系统阐述了活性物质在水环境中释放速率的计算及修正方法、环境浓度的预测模型、现有的暴露场景及其局限性等。本文以期为我国开展防污漆活性物质海洋环境风险评估提供研究基础和科学依据,并提出了今后的研究重点和方向。

关 键 词:防污漆  活性物质  海洋生物  海洋环境风险评估  预测无效应浓度  预测环境浓度  统计外推法
收稿时间:7/7/2014 12:00:00 AM
修稿时间:2014/9/12 0:00:00

Review on Recent Approaches for Marine Environmental Risk Assessment of Active Substances in Antifouling Paints
Mei Chengfang,Chen Jinlin,Tian Yajing,Liang Yanzhen,Liang Huijun,Ma Lianying,Sun Guoping,Xu Meiying,Luan Tiangang and Zeng Guoqu.Review on Recent Approaches for Marine Environmental Risk Assessment of Active Substances in Antifouling Paints[J].Asian Journal of Ecotoxicology,2015,10(1):66-80.
Authors:Mei Chengfang  Chen Jinlin  Tian Yajing  Liang Yanzhen  Liang Huijun  Ma Lianying  Sun Guoping  Xu Meiying  Luan Tiangang and Zeng Guoqu
Institution:1. Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China 2. State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou 510070, China 3. MOE Key Laboratory Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;1. Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China 2. State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou 510070, China;Foreign Economic Cooperation Office, Ministry of Environmental Protection, Beijing 100035, China;1. Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China 2. State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou 510070, China;Foshan Center for Environmental Health & Safety Assessment, Foshan 528000, China;1. Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China 2. State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou 510070, China;1. Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China 2. State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou 510070, China;1. Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China 2. State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou 510070, China;MOE Key Laboratory Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;1. Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China 2. State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou 510070, China
Abstract:Potential ecological risk for marine environment and human health posed by active substances in antifouling paints has been a global concern. Some developed countries have established the techniques on marine environmental risk assessment of these active substances, while in China the relevant researches are still blank. The given article is inclined to make a research review over the background, laws and regulations, technical standards and the advances of the assessment of marine environment risk brought about by the active substance in antifouling paints. The key technologies and methodologies around the issues of hazard and exposure assessment were explored. In hazard assessment, species selection principles, toxicity data quality requirements, methods of deriving the predicted no effect concentrations (PNEC) and their application ranges were compared and evaluated. In exposure assessment, estimation and correction methods of release rates of active substances, models for calculating the predicted environmental concentrations (PEC), the exposure scenarios and their limitations were discussed in detail. This may afford reference and scientific basis for the study on marine environment risk assessment of these kinds of active substance in our country and provide some information on the emphasis and direction of future research.
Keywords:antifouling paint  active substance  marine organisms  marine environmental risk assessment  PNEC  PEC  statistical extrapolation method
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《生态毒理学报》浏览原始摘要信息
点击此处可从《生态毒理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号