首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Current status of municipal wastewater treatment plants in North-east China: implications for reforming and upgrading
Authors:Bin Cui  Chongjun Zhang  Liang Fu  Dandan Zhou  Mingxin Huo
Institution:Jilin Engineering Laboratory for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
Abstract: ● The performance and costs of 20 municipal WWTPs were analyzed. ● Effluent COD and NH4+-N effluent exceed the limits more frequently in winter. ● Nitrification and refractory pollutant removal are limited at low temperatures. ● To meet the national standards, electricity cost must increase by > 42% in winter. ● Anammox, granular sludge, and aerobic denitrification are promising technologies. Climate affects the natural landscape, the economic productivity of societies, and the lifestyles of its inhabitants. It also influences municipal wastewater treatment. Biological processes are widely employed in municipal wastewater treatment plants (WWTPs), and the prolonged cold conditions brought by the winter months each year pose obstacles to meeting the national standards in relatively cold regions. Therefore, both a systematic analysis of existing technical bottlenecks as well as promising novel technologies are urgently needed for these cold regions. Taking North-east China as a case, this review studied and analyzed the main challenges affecting 20 municipal WWTPs. Moreover, we outlined the currently employed strategies and research issues pertaining to low temperature conditions. Low temperatures have been found to reduce the metabolism of microbes by 58% or more, thereby leading to chemical oxygen demand (COD) and NH4+-N levels that have frequently exceeded the national standard during the winter months. Furthermore, the extracellular matrix tends to lead to activated sludge bulking issues. Widely employed strategies to combat these issues include increasing the aeration intensity, reflux volume, and flocculant addition; however, these strategies increase electricity consumption by > 42% in the winter months. Internationally, the processes of anaerobic ammonium oxidation (anammox), granular sludge, and aerobic denitrification have become the focus of research for overcoming low temperature. These have inspired us to review and propose directions for the further development of novel technologies suitable for cold regions, thereby overcoming the issues inherent in traditional processes that have failed to meet the presently reformed WWTP requirements.
Keywords:Low temperature  Municipal WWTPs  Cold region  Electricity consumption  Nitrogen removal  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号