首页 | 本学科首页   官方微博 | 高级检索  
     


Water quality prediction of copper-molybdenum mining-beneficiation wastewater based on the PSO-SVR model
Authors:Xiaohua Fu  Qingxing Zheng  Guomin Jiang  Kallol Roy  Lei Huang  Chang Liu  Kun Li  Honglei Chen  Xinyu Song  Jianyu Chen  Zhenxing Wang
Abstract: ● Data acquisition and pre-processing for wastewater treatment were summarized. ● A PSO-SVR model for predicting CODeff in wastewater was proposed. ● The CODeff prediction performances of the three models in the paper were compared. ● The CODeff prediction effects of different models in other studies were discussed. The mining-beneficiation wastewater treatment is highly complex and nonlinear. Various factors like influent quality, flow rate, pH and chemical dose, tend to restrict the effluent effectiveness of mining-beneficiation wastewater treatment. Chemical oxygen demand (COD) is a crucial indicator to measure the quality of mining-beneficiation wastewater. Predicting COD concentration accurately of mining-beneficiation wastewater after treatment is essential for achieving stable and compliant discharge. This reduces environmental risk and significantly improves the discharge quality of wastewater. This paper presents a novel AI algorithm PSO-SVR, to predict water quality. Hyperparameter optimization of our proposed model PSO-SVR, uses particle swarm optimization to improve support vector regression for COD prediction. The generalization capacity tested on out-of-distribution (OOD) data for our PSO-SVR model is strong, with the following performance metrics of root means square error (RMSE) is 1.51, mean absolute error (MAE) is 1.26, and the coefficient of determination (R2) is 0.85. We compare the performance of PSO-SVR model with back propagation neural network (BPNN) and radial basis function neural network (RBFNN) and shows it edges over in terms of the performance metrics of RMSE, MAE and R2, and is the best model for COD prediction of mining-beneficiation wastewater. This is because of the less overfitting tendency of PSO-SVR compared with neural network architectures. Our proposed PSO-SVR model is optimum for the prediction of COD in copper-molybdenum mining-beneficiation wastewater treatment. In addition, PSO-SVR can be used to predict COD on a wide variety of wastewater through the process of transfer learning.
Keywords:Chemical oxygen demand  Mining-beneficiation wastewater treatment  Particle swarm optimization  Support vector regression  Artificial neural network  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号