首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Online recognition of drainage type based on UV-vis spectra and derivative neural network algorithm
Authors:Qiyun Zhu  April Gu  Dan Li  Tianmu Zhang  Lunhong Xiang  Miao He
Institution:1. School of Environment, Tsinghua University, Beijing 100084, China2. Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA3. Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
Abstract: • UV-vis absorption analyzer was applied in drainage type online recognition. • The UV-vis spectrum of four drainage types were collected and evaluated. • A convolutional neural network with multiple derivative inputs was established. • Effects of different network structures and input contents were compared. Optimizing sewage collection is important for water pollution control and wastewater treatment plants quality and efficiency improvement. Currently, the urban drainage pipeline network is upgrading to improve its classification and collection ability. However, there is a lack of efficient online monitoring and identification technology. UV-visible absorption spectrum probe is considered as a potential monitoring method due to its small size, reagent-free and fast detection. Because the performance parameters of probe like optic resolution, dynamic interval and signal-to-noise ratio are weak and high turbidity of sewage raises the noise level, it is necessary to extract shape features from the turbidity disturbed drainage spectrum for classification purposes. In this study, drainage network samples were online collected and tested, and four types were labeled according to sample sites and environment situation. Derivative spectrum were adopted to amplify the shape features, while convolutional neural network algorithm was established to conduct nonlinear spectrum classification. Influence of input and network structure on classification accuracy was compared. Original spectrum, first-order derivative spectrum and a combination of both were set to be three different inputs. Artificial neural network with or without convolutional layer were set be two different network structures. The results revealed a convolutional neural network combined with inputs of first and zero-order derivatives was proposed to have the best classification effect on domestic sewage, mixed rainwater, rainwater and industrial sewage. The recognition rate of industrial wastewater was 100%, and the recognition rate of domestic sewage and rainwater mixing system were over 90%.
Keywords:Drainage online recognition  UV-vis spectra  Derivative spectrum  Convolutional neural network  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号