首页 | 本学科首页   官方微博 | 高级检索  
     检索      


δ15N-stable isotope analysis of NHx: An overview on analytical measurements,source sampling and its source apportionment
Authors:Noshan Bhattarai  Shuxiao Wang  Yuepeng Pan  Qingcheng Xu  Yanlin Zhang  Yunhua Chang  Yunting Fang
Abstract: • Challenges in sampling of NH3 sources for d15N analysis are highlighted. • Uncertainties in the isotope-based source apportionment of NH3 and NH4+ are outlined. • Characterizing dynamic isotopic fractionation may reduce uncertainties of NHx science. Agricultural sources and non-agricultural emissions contribute to gaseous ammonia (NH3) that plays a vital role in severe haze formation. Qualitative and quantitative contributions of these sources to ambient PM2.5 (particulate matter with an aerodynamic equivalent diameter below 2.5 µm) concentrations remains uncertain. Stable nitrogen isotopic composition (δ15N) of NH3 and NH4+15N(NH3) and δ15N(NH4+), respectively) can yield valuable information about its sources and associated processes. This review provides an overview of the recent progress in analytical techniques for δ15N(NH3) and δ15N(NH4+) measurement, sampling of atmospheric NH3 and NH4+ in the ambient air and their sources signature (e.g., agricultural vs. fossil fuel), and isotope-based source apportionment of NH3 in urban atmosphere. This study highlights that collecting sample that are fully representative of emission sources remains a challenge in fingerprinting δ15N(NH3) values of NH3 emission sources. Furthermore, isotopic fractionation during NH3 gas-to-particle conversion under varying ambient field conditions (e.g., relative humidity, particle pH, temperature) remains unclear, which indicates more field and laboratory studies to validate theoretically predicted isotopic fractionation are required. Thus, this study concludes that lack of refined δ15N(NH3) fingerprints and full understanding of isotopic fractionation during aerosol formation in a laboratory and field conditions is a limitation for isotope-based source apportionment of NH3. More experimental work (in chamber studies) and theoretical estimations in combinations of field verification are necessary in characterizing isotopic fractionation under various environmental and atmospheric neutralization conditions, which would help to better interpret isotopic data and our understanding on NHx (NH3 + NH4+) dynamics in the atmosphere.
Keywords:Aerosol ammonium  Atmospheric gaseous ammonia  Isotope fingerprinting  Isotope-based source apportionment  Ammonia gas-to-particle conversion  
点击此处可从《Frontiers of Environmental Science & Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Environmental Science & Engineering》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号