首页 | 本学科首页   官方微博 | 高级检索  
     检索      


LES validation of urban flow,part I: flow statistics and frequency distributions
Authors:Email author" target="_blank">Denise?HertwigEmail author  Gopal?Patnaik  Bernd?Leitl
Institution:1.Meteorological Institute,University of Hamburg,Hamburg,Germany;2.Department of Meteorology,University of Reading,Reading,UK;3.Laboratories for Computational Physics and Fluid Dynamics,U.S. Naval Research Laboratory,Washington,USA
Abstract:Essential prerequisites for a thorough model evaluation are the availability of problem-specific, quality-controlled reference data and the use of model-specific comparison methods. The work presented here is motivated by the striking lack of proportion between the increasing use of large-eddy simulation (LES) as a standard technique in micro-meteorology and wind engineering and the level of scrutiny that is commonly applied to assess the quality of results obtained. We propose and apply an in-depth, multi-level validation concept that is specifically targeted at the time-dependency of mechanically induced shear-layer turbulence. Near-surface isothermal turbulent flow in a densely built-up city serves as the test scenario for the approach. High-resolution LES data are evaluated based on a comprehensive database of boundary-layer wind-tunnel measurements. From an exploratory data analysis of mean flow and turbulence statistics, a high level of agreement between simulation and experiment is apparent. Inspecting frequency distributions of the underlying instantaneous data proves to be necessary for a more rigorous assessment of the overall prediction quality. From velocity histograms local accuracy limitations due to a comparatively coarse building representation as well as particular strengths of the model to capture complex urban flow features with sufficient accuracy are readily determined. However, the analysis shows that further crucial information about the physical validity of the LES needs to be obtained through the comparison of eddy statistics, which is focused on in part II. Compared with methods that rely on single figures of merit, the multi-level validation strategy presented here supports conclusions about the simulation quality and the model’s fitness for its intended range of application through a deeper understanding of the unsteady structure of the flow.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号