首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Near-critical free-surface flows: real fluid flow analysis
Authors:Oscar Castro-Orgaz  Hubert Chanson
Institution:(1) Professor in Civil Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
Abstract:An open channel flow with a flow depth close to the critical depth is characterised by a curvilinear streamline flow field that results in steady free surface undulations. Near critical flows of practical relevance encompass the undular hydraulic jump when the flow changes from supercritical (F > 1) to subcritical (F < 1), and the undular weir flow over broad-crested weirs where the flow changes from subcritical (F < 1) to supercritical (F > 1). So far these flows were mainly studied based on ideal fluid flow computations, for which the flow is assumed irrotational and, thus, shear forces are absent. While the approach is accurate for critical flow conditions (F = 1) in weir and flumes, near-critical flows involve long distances reaches, and the effect of friction on the flow properties cannot be neglected. In the present study the characteristics of near-critical free-surface flows are reanalysed based on a model accounting for both the streamline curvature and friction effects. Based on the improved model, some better agreement with experimental results is found, thereby highlighting the main frictional features of the flow profiles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号