首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Flooding and the interannual variability of hydrologic quantities in the Missouri River basin
Authors:Hamed D Ibrahim  Donald J Wuebbles
Institution:1. Department of Atmospheric Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;2. Department of Atmospheric Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA

Contribution: Funding acquisition, Resources, Writing - review & editing

Abstract:The six mainstem reservoirs in the Missouri River basin (MRB) are managed mainly to prevent flooding from snowmelt and heavy rainfall, a goal for which the interannual variabilities of precipitation ( P ), evapotranspiration ( ET ), and surface air temperature ( T air ) are vitally important. We tested the hypothesis that under the expected higher variability owing to global climate change, the months with the highest contributions to the interannual variability of P , ET , and T air in the MRB will remain unchanged and quantified likely temporal trends in these quantities. Using high-resolution, downscaled Coupled Model Intercomparison Project Phase 5 multi-model ensemble data sets, we compared the multi-year ratio of monthly and annual interannual variability and temporal trends in P , ET , and T air during 2011–2020 with three future decades. Results showed that the 6 months with the highest interannual variability in P and ET (April–September) are the same in all four decades. However, for T air , only 4 months (December–March) retain their status as highly variable throughout the four decades; September and October variability is exceeded by the variability in other months. This implies that, compared to P and ET , the cyclical change in the probabilities of T air in the MRB is less stable under future global climate change. This finding can be used to consider the need to alter existing strategies for reservoir release while minimizing the likelihood of aggravating flooding below the reservoirs.
Keywords:Missouri River  interannual variability  flooding  reservoir release  climate change
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号