首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impacts of Climate Variability and Land Use Alterations on Frequency Distributions of Terrestrial Runoff Loading to Coastal Waters in Southern California1
Authors:R Edward Beighley  Thomas Dunne  John M Melack
Institution:1. Respectively, Assistant Professor, Department of Civil and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, California 92182‐1324;2. Professors (Dunne, Melack), Bren School of Environmental Science and Management, University of California, Santa Barbara, California
Abstract:Abstract: The transport of water, sediment, dissolved and particulate chemicals, and bacteria from coastal watersheds affects the nearshore marine and estuarine waters. In southern California, coastal watersheds deliver water and associated constituents to the nearshore system in discrete pulses. To better understand the pulsed nature of these watersheds, frequency distributions of simulated runoff events are presented for: (1) three land use conditions (1929, 1998, 2050); (2) three time periods (all water years 1989‐2002), only El Nino years (1992, 1993, 1995, 1998); and only non‐El Nino years; and (3) three regions (watershed, uplands, and lowlands). At the watershed scale, there was a significant increase (>200%) in mean event runoff from 1929 to 2050 (0.4‐1.3 cm) due to localized urbanization, which shifted the dominant sources of runoff from the mountains in 1929 (78% of watershed runoff) to the coastal plane for 2050 conditions (51% of watershed runoff). Inter‐annual climate variability was strong in the rainfall and runoff frequency distributions, with mean event rainfall and runoff 66 and 60% larger in El Nino relative to non‐El Nino years. Combining urbanization and climate variability, 2050 land conditions resulted in El Nino years being five times more likely to produce large (>3.0 cm) runoff events relative to non‐El Nino years. Combining frequency distributions of event runoff with regional nutrient export relationships, we show that in El Nino years, one in five events produced runoff ≥2.5 cm and temporary nearshore nitrate and phosphate concentrations of 12 and 1.4 μM, respectively, or approximately 5‐10 times above ambient conditions.
Keywords:climate  event  frequency distribution  nutrients  risk  runoff  urbanization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号