长期生物炭添加对稻田土壤细菌和真菌反硝化N2O排放的影响 |
摘要点击 1786 全文点击 369 投稿时间:2023-09-20 修订日期:2023-11-23 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 生物炭 水稻土 氧化亚氮(N2O) 真菌反硝化 反硝化 |
英文关键词 biochar paddy soil nitrous oxide (N2O) fungal denitrification denitrification |
作者 | 单位 | E-mail | 王梦洁 | 浙江农林大学环境与资源学院, 碳中和学院, 省部共建亚热带森林培育国家重点实验室, 杭州 311300 浙江省农业科学院环境资源与土壤肥料研究所, 浙江省生物炭工程技术研究中心, 杭州 310021 | mjsday@163.com | 蒋文婷 | 浙江农林大学环境与资源学院, 碳中和学院, 省部共建亚热带森林培育国家重点实验室, 杭州 311300 | | 徐有祥 | 龙游县农业农村局, 衢州 324400 | | 刘玉学 | 浙江省农业科学院环境资源与土壤肥料研究所, 浙江省生物炭工程技术研究中心, 杭州 310021 | | 吕豪豪 | 浙江省农业科学院环境资源与土壤肥料研究所, 浙江省生物炭工程技术研究中心, 杭州 310021 | | 汪玉瑛 | 浙江省农业科学院环境资源与土壤肥料研究所, 浙江省生物炭工程技术研究中心, 杭州 310021 | | 杨生茂 | 浙江省农业科学院环境资源与土壤肥料研究所, 浙江省生物炭工程技术研究中心, 杭州 310021 | | 何莉莉 | 浙江省农业科学院环境资源与土壤肥料研究所, 浙江省生物炭工程技术研究中心, 杭州 310021 | llhe0423@163.com | 蔡延江 | 浙江农林大学环境与资源学院, 碳中和学院, 省部共建亚热带森林培育国家重点实验室, 杭州 311300 | |
|
中文摘要 |
由细菌和真菌驱动的反硝化作用是稻田土壤氧化亚氮(N2O)排放的主要来源,一般认为生物炭通过影响细菌反硝化过程来减少N2O排放,而对真菌反硝化的相关影响机制尚不清楚.以中国科学院常熟农业生态实验基地长期秸秆炭化还田试验田为对象,通过室内厌氧培养和分子生物学技术研究了长期不同生物炭施加量下(空白、 2.25 t·hm-2和22.5 t·hm-2,分别用BC0、 BC1和BC10表示)稻田土壤细菌和真菌反硝化产生N2O的相对贡献及相关微生物的作用机制.结果表明,与BC0相比,生物炭处理显著降低了N2O排放速率、反硝化势以及N2O累积排放量,且3个处理中细菌反硝化贡献均大于真菌反硝化;其中,BC10的细菌反硝化相对贡献率(62.9%)相较于BC0(50.8%)显著增加,BC10的真菌反硝化相对贡献率(37.1%)显著低于BC0(49.2%).生物炭施加显著增加了细菌反硝化功能基因(nirK、 nirS和nosZ)的丰度,减低了fungal nirK基因的丰度.相关分析结果表明真菌反硝化贡献率与N2O排放速率显著正相关,与土壤pH、 TN、 SOM和DOC显著负相关.生物炭可能通过提高pH和碳氮含量等来抑制反硝化真菌的生长,降低相关功能基因丰度,从而减弱了真菌反硝化过程NO还原为N2O的能力,使真菌反硝化过程产生N2O的贡献率显著下降,从而减少了稻田土壤反硝化N2O排放.本研究有助于拓宽对稻田土壤反硝化过程的认知,并为生物炭施用调控真菌反硝化N2O排放提供理论基础. |
英文摘要 |
Denitrification driven by bacteria and fungi is the main source of nitrous oxide (N2O) emissions from paddy soil. It is generally believed that biochar reduces N2O emissions by influencing the bacterial denitrification process, but the relevant mechanism of its impact on fungal denitrification is still unclear. In this study, the long-term straw carbonization returning experimental field in Changshu Agricultural Ecological Experimental Base of the Chinese Academy of Sciences was taken as the object. Through indoor anaerobic culture and molecular biology technology, the relative contributions of bacteria and fungi to denitrifying N2O production in paddy soil and the related microorganism mechanism were studied under different long-term biochar application amounts (blank, 2.25 t·hm-2, and 22.5 t·hm-2, respectively, expressed by BC0, BC1, and BC10). The results showed that compared with that in BC0, biochar treatment significantly reduced N2O emission rate, denitrification potential, and cumulative N2O emissions, and the contribution of bacterial denitrification was greater than that of fungal denitrification in all three treatments. Among them, the relative contribution rate of bacterial denitrification in BC10 (62.9%) was significantly increased compared to BC0 (50.8%), whereas the relative contribution rate of fungal denitrification in BC10 (37.1%) was significantly lower than that in BC0 (49.2%). The application of biochar significantly increased the abundance of bacterial denitrification functional genes (nirK, nirS, and nosZ) but reduced the abundance of fungal nirK genes. The contribution rate of fungal denitrification was significantly positively correlated with the N2O emission rate and negatively correlated with soil pH, TN, SOM, and DOC. Biochar may have inhibited the growth of denitrifying fungi by increasing pH and carbon and nitrogen content, reducing the abundance of related functional genes, thereby weakening the reduction ability of NO to N2O during fungal denitrification process. This significantly reduces the contribution rate of N2O production during the fungal denitrification process and the denitrification N2O emissions from paddy soil. This study helps to broaden our understanding of the denitrification process in paddy soil and provides a theoretical basis for further regulating fungal denitrification N2O emissions. |
|
|
|