2015年2月天津市大气颗粒物数浓度变化及其与气象条件的关系
Characteristics of particle number concentration during February in 2015 in Tianjin and their relationship with meteorological conditions
-
摘要: 2015年2月16—28日,采用APS-3321空气动力学粒径谱仪在天津市环境监测中心站连续监测0.5~10 μm间不同粒径大气颗粒物数浓度,并同步记录气象参数,研究了大气颗粒物的数浓度变化和粒径分布特征,运用Spearman统计分析方法初步探讨了气象因素对大气颗粒物数浓度的影响。结果表明,该地区大气颗粒物5 min平均数浓度为285 个·cm-3,其中0.5~1.0 μm粒径颗粒物对总粒子数浓度贡献较大,约占96.7%。观测期间共出现颗粒物数浓度显著增高的9个污染事件,不同粒径中污染事件颗粒物数浓度最大值的主导气象因素不同:对于0.5~1.0 μm,其与相对湿度呈明显的正相关性;对于1.0~2.5 μm,其与气象因素无明显相关性;对于2.5~10 μm,其与相对湿度呈明显负相关性、与风速呈明显正相关性。颗粒物数浓度受气象条件影响较大,其中相对湿度影响最为显著,当相对湿度小于70%时,颗粒物数浓度随着湿度的增加而增加;当相对湿度大于70%时,颗粒物数浓度随着湿度的增加而减少。此外,烟花爆竹燃放对颗粒物数浓度短暂上升贡献突出,主要集中在0.5~1.0 μm粒径的亚微米颗粒物。Abstract: From February 16 to 28, 2015, measurements of the number concentration of atmospheric particles with sizes 0.5 to 10 μm were conducted using an APS-3321 (Aerodynamic Particle Sizer 3321) at the station of the Tianjin Environment Monitoring Centre. Major meteorological parameters such as atmospheric pressure, temperature, relative humidity, and wind speed were collected simultaneously. The changes in concentration and size distributions of these particles were studied. Statistical analysis methods including Spearman were used to explore the influence of meteorological factors on the atmospheric particle number concentration. The 5 min average particle-number concentration was 285 cm-3. Particles with sizes 0.5 to 1.0 μm made a relatively great contribution to the total particle number concentration, about 96.74%. Nine pollution events, indicated by a significant increase in the number of particles, were observed during the monitoring period. For the different size bins, the meteorological factors that affected the highest values of the number concentration among different pollution events were different. For the range 0.5 to 1.0 μm, a significant positive correlation with relative humidity was observed. For those particles 1.0 to 2.5 μm, no significant correlation with meteorological factors was found. For particles 2.5 to 10 μm, an obviously negative correlation with relative humidity and a strong positive correlation with wind speed were noticed. The particle number concentration and size distribution were significantly influenced by meteorological parameters, especially by relative humidity. With the increase in relative humidity, the particle number concentration increased when the relative humidity was less than 70%, but decreased when the humidity was more than 70%. It was found that the setting-off of fireworks and firecrackers made a great contribution to the particle number concentration, especially to submicron particles in the size range 0.5-1.0 μm.
-
Key words:
- particle /
- number concentration /
- size distribution /
- meteorological parameters /
- fireworks and crackers
-
[1] HORVATH H. Size segregated light absorption coefficient of the atmospheric aerosol[J]. Atmospheric Environment, 1995, 29(8):875-883 [2] 陈义珍, 赵丹, 柴发合, 等. 广州市与北京市大气能见度与颗粒物质量浓度的关系[J]. 中国环境科学, 2010, 30(7): 967-971 [3] ROMANATHAN V, CRUTZEN P J, KIEHL J T, et al. Aerosol, climate, and the hydrological cycle[J]. Science, 2001, 294(5549): 2119-2124 [4] CHUANG K J, YAN Y H, CHIU S Y, et al. Long-term air pollution exposure and risk factors for cardiovascular diseases among the elderly in Taiwan[J]. Occupational & Environmental Medicine, 2011, 68(1): 64-68 [5] 陈仁杰, 陈秉衡, 阙海东. 我国113个城市大气颗粒物污染的健康经济学评价[J]. 中国环境科学, 2010, 30(3): 410-415 [6] BUZORIUS G, HAMERI K, PEKKANEN J, et al. Spatial variation of aerosol number concentration in Helsinki city[J]. Atmospheric Environment, 1999, 33(4): 553-565 [7] DONALDSON K, LI X Y, MACNEE W. Ultrafine(nanometer) particle mediated lung injury[J]. Journal of Aerosol Science, 1998, 29(5/6): 553-560 [8] PETERS A, WICHMANN H E, TUCH T, et al. Respiratory effects are associated with the number of ultrafine particles[J]. American Journal of Respiratory and Critical Care Medicine, 1997, 155(4): 1376-83 [9] 李金娟, 邵龙义, 杨书申. 可吸入颗粒物的健康效应机制[J]. 环境与健康杂志, 2006, 23(2): 185-188 [10] BI X, FENG Y, WU J, et al. Source apportionment of PM10 in six cities of northern China[J]. Atmospheric Environment, 2007,41(5):903-912 [11] 霍静, 李彭辉, 韩斌, 等. 天津秋冬季PM2.5碳组分化学特征与来源分析[J]. 中国环境科学, 2011, 31(12): 1937-1942 [12] 李伟芳, 白志鹏, 魏静东, 等. 天津冬季大气中PM2.5及其主要组分的污染特征[J]. 中国环境科学, 2008, 28(6): 481-486 [13] 黄鹤, 蔡子颖, 韩素芹, 等. 天津市PM10, PM2.5和PM1连续在线观测分析[J]. 环境科学研究, 2011, 24(8): 897-903 [14] 董海燕, 古金霞, 陈魁, 等. 天津市区PM2.5中碳组分污染特征及来源分析[J]. 中国环境监测, 2013, 29(1): 34-38 [15] 姚青,孙玫玲,张长春,等. 天津大气气溶胶化学组分的粒径分布和垂直分布[J]. 气象科技, 2008, 36(6):692-696 [16] BISMARCK-OSTEN C V, BIRMILI W, KETZEL M, et al. Characterization of parameters influencing the spatiotemporal variability of urban particle number size distributions in four European cities[J]. Atmospheric Environment. 2013, 77(7): 415-429 [17] 翟晴飞, 金莲姬, 林振毅, 等. 石家庄春季大气气溶胶数浓度和谱的观测特征[J]. 中国环境科学, 2011, 31(6): 886-891 [18] 赵素平, 余晔, 陈晋北, 等. 兰州市夏秋季颗粒物谱分布特征研究[J]. 环境科学, 2012, 33(3): 687-693 [19] 张涛, 陶俊, 王伯光, 等. 广州市春季大气颗粒物的粒径分布及能见度研究[J]. 中国科学院大学学报, 2010, 27(3): 331-337 [20] 钱凌, 银燕, 童尧青, 等. 南京北郊大气细颗粒物的粒径分布特征[J]. 中国环境科学, 2008, 28(1): 18-22 [21] 朱能文. 颗粒物浓度的影响因素及变化规律[J]. 环境与可持续发展, 2005(2): 16-18 [22] 林俊,刘卫,李燕,等.大气气溶胶粒径分布特征与气象条件的相关性分析[J]. 气象与环境学报, 2009, 25(1): 1-5 [23] 郎凤玲, 闫伟奇, 张泉,等.北京大气颗粒物数浓度粒径分布特征及与气象条件的相关性[J]. 中国环境科学, 2013, 33(7): 1153-1159 [24] CUHADAROGLU B, DEMIRCI E. Influence of some meteorological factors on air pollution in Trabzon city[J]. Energy and buildings, 1997, 25(3): 179-184 [25] 王淑英, 张小玲. 北京地区PM10污染的气象特征[J]. 应用气象学报, 2002, 13(1): 177-184 [26] 赵素平, 余晔, 何建军. 兰州市2011年春节期间颗粒物浓度及其谱分布特征[J]. 中国环境科学, 2012, 32(11): 1939-1947 [27] 金军, 王英, 李令军, 等. 北京春节期间大气颗粒物污染及影响[J]. 环境污染与防治, 2007, 29(3):229-232 期刊类型引用(9)
1. 陈峥嵘,李飞,程伶俐,焦正. 上海市典型道路扬尘源解析. 上海第二工业大学学报. 2021(02): 98-107 . 百度学术
2. 郑庆锋,史军,谈建国,段玉森,林燕芬,徐卫忠. 2007~2016年上海颗粒物浓度特征与气候背景异同分析. 环境科学. 2020(01): 14-22 . 百度学术
3. 王郁,吴玲燕,李磊. 深圳市城区大气颗粒物及主要水溶性无机离子的污染特征. 环境科学学报. 2020(03): 792-802 . 百度学术
4. 周变红,曹夏,张容端,刘雅雯,王锦. 春节期间宝鸡市区大气颗粒物粒径分布特征. 河南科学. 2020(02): 236-242 . 百度学术
5. 郭琼琼,文远高,唐虎,夏雨琳,明廷臻,徐千芃. 滨水小区内气流和颗粒物扩散的特性研究. 环境污染与防治. 2020(11): 1319-1323 . 百度学术
6. 彭爽,康平,张小玲,Klaus Schaefer,袁亮,向卫国,雷雨. 成都市大气颗粒物粒径分布及其对能见度的影响. 环境科学学报. 2020(12): 4432-4441 . 百度学术
7. 桂海林,江琪,康志明,李炬,刘超,尤媛. 2016年冬季北京地区一次重污染天气过程边界层特征. 中国环境科学. 2019(07): 2739-2747 . 百度学术
8. 吕梦瑶,张恒德,王继康,江琪,刘超,张碧辉,李青春. 2015年冬季京津冀两次重污染天气过程气象成因. 中国环境科学. 2019(07): 2748-2757 . 百度学术
9. 王潇,曹念文,黄婧婷,王贺,周杰,郑凯端. 西安市一次霾过程中气溶胶垂直分布特征及气象要素影响. 环境科学研究. 2018(09): 1519-1526 . 百度学术
其他类型引用(14)
-

计量
- 文章访问数: 1619
- HTML全文浏览数: 1259
- PDF下载数: 640
- 施引文献: 23