抗生素环境行为及其环境效应研究进展

高立红, 史亚利, 厉文辉, 刘杰民, 蔡亚岐. 抗生素环境行为及其环境效应研究进展[J]. 环境化学, 2013, 32(9): 1619-1633. doi: 10.7524/j.issn.0254-6108.2013.09.004
引用本文: 高立红, 史亚利, 厉文辉, 刘杰民, 蔡亚岐. 抗生素环境行为及其环境效应研究进展[J]. 环境化学, 2013, 32(9): 1619-1633. doi: 10.7524/j.issn.0254-6108.2013.09.004
GAO Lihong, SHI Yali, LI Wenhui, LIU Jiemin, CAI Yaqi. Environmental behavior and impacts of antibiotics[J]. Environmental Chemistry, 2013, 32(9): 1619-1633. doi: 10.7524/j.issn.0254-6108.2013.09.004
Citation: GAO Lihong, SHI Yali, LI Wenhui, LIU Jiemin, CAI Yaqi. Environmental behavior and impacts of antibiotics[J]. Environmental Chemistry, 2013, 32(9): 1619-1633. doi: 10.7524/j.issn.0254-6108.2013.09.004

抗生素环境行为及其环境效应研究进展

  • 基金项目:

    国家自然科学基金项目(20837003, 20890111, 20921063)资助.

Environmental behavior and impacts of antibiotics

  • Fund Project:
  • 摘要: 抗生素作为一类抗菌性药物广泛用于预防和治疗人类和动物疾病,并且在畜牧和水产养殖业中用于促进动物的生长.进入人和动物体内的抗生素不能被生物体完全吸收,大部分以原药或代谢物的形式经由尿液和粪便排出体外进入环境中.抗生素是环境中一类新型污染物,由于其使用量大和诱导产生抗生素耐药菌株,对人类健康和生态环境构成威胁,近年来受到日益广泛的关注.抗生素诱导产生的抗性基因(ARGs)也已经被定义为环境中一类新型污染物.本文介绍了抗生素的使用现状、环境来源以及不同环境介质中抗生素的分析方法和污染现状,并且对其吸附降解行为、毒性效应以及ARGs进行了讨论,最后指出了目前研究中存在的问题,并对未来研究进行了展望.在今后,应该更加系统地研究环境中抗生素的污染现状及其迁移转化等行为;开展低剂量长期慢性毒性和复合毒性效应研究;加强对环境中ARGs的污染现状和环境行为研究.
  • [1] Halling-Sørensen B, Nors Nielsen S, Lanzky P F, et al. Occurrence, fate and effects of pharmaceutical substances in the environment-A review[J]. Chemosphere, 1998, 36(2): 357-393
    [2] Martinez J L. Environmental pollution by antibiotics and by antibiotic resistance determinants[J]. Environmental Pollution, 2009, 157(11): 2893-2902
    [3] Hernando M, Mezcua M, Fernandezalba A, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2): 334-342
    [4] Gulkowska A, Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Research, 2008, 42(1/2): 395-403
    [5] Kümmerer K. Antibiotics in the aquatic environment- A review- Part I[J]. Chemosphere, 2009, 75(4): 417-434
    [6] Moreno-Bondi M C, Marazuela M D, Herranz S, et al. An overview of sample preparation procedures for LC-MS multiclass antibiotic determination in environmental and food samples[J]. Analytical and Bioanalytical Chemistry, 2009, 395(4): 921-946
    [7] Richardson B, Lam P, Martin M. Emerging chemicals of concern: Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China[J]. Marine Pollution Bulletin, 2005, 50(9): 913-920
    [8] 曾化松,王艳琳. 抗生素滥用的现状及应对策略[J]. 中国卫生事业管理, 2012, 5: 341-343
    [9] Ben W W, Qiang Z M, Adams C, et al. Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2008, 1202(2): 173-180
    [10] Benito-Pena E, Urraca J L, Sellergren B, et al. Solid-phase extraction of fluoroquinolones from aqueous samples using a water-compatible stochiometrically imprinted polymer[J]. Journal of Chromatography A, 2008, 1208(1/2): 62-70
    [11] Castellari M, Gratacos-Cubarsi M, Garcia-Regueiro J A. Detection of tetracycline and oxytetracycline residues in pig and calf hair by ultra-high-performance liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2009, 1216(46): 8096-8100
    [12] Cristofani E, Antonini C, Tovo G, et al. A confirmatory method for the determination of tetracyclines in muscle using high-performance liquid chromatography with diode-array detection[J]. Analytica Chimica Acta, 2009, 637(1/2): 40-46
    [13] Herrera-Herrera A V, Hernandez-Borges J, Rodriguez-Delgado M A. Fluoroquinolone antibiotic determination in bovine, ovine and caprine milk using solid-phase extraction and high-performance liquid chromatography-fluorescence detection with ionic liquids as mobile phase additives[J]. Journal of Chromatography A, 2009, 1216(43): 7281-7287
    [14] Abuin S, Codony R, Compano R, et al. Analysis of macrolide antibiotics in river water by solid-phase extraction and liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2006, 1114(1): 73-81
    [15] Vazquez-Roig P, Segarra R, Blasco C, et al. Determination of pharmaceuticals in soils and sediments by pressurized liquid extraction and liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2010, 1217(16): 2471-2483
    [16] Golet E M, Strehler A, Alder A C, et al. Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction[J]. Analytical Chemistry, 2002, 74(21): 5455-5462
    [17] Gobel A, Thomsen A, McArdell C, et al. Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge[J]. Journal of Chromatography A, 2005, 1085(2): 179-189
    [18] Lffler D, Ternes T A. Determination of acidic pharmaceuticals, antibiotics and ivermectin in river sediment using liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2003, 1021(1/2): 133-144
    [19] Blackwell P A, Holten Lützhøft H C, Ma H P, et al. Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC-UV and fluorescence detection[J]. Talanta, 2004, 64(4): 1058-1064
    [20] Turiel E, Martinesteban A, Tadeo J. Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV[J]. Analytica Chimica Acta, 2006, 562(1): 30-35
    [21] Xu J, Wu L, Chen W P, et al. Simultaneous determination of pharmaceuticals, endocrine disrupting compounds and hormone in soils by gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2008, 1202(2): 189-195
    [22] Zhou J H, Xue X F, Li Y, et al. Multiresidue determination of tetracycline antibiotics in propolis by using HPLC-UV detection with ultrasonic-assisted extraction and two-step solid phase extraction[J]. Food Chemistry, 2009, 115(3): 1074-1080
    [23] Yang J F, Ying G G, Zhao J L, et al. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS[J]. Science of the Total Environment, 2010, 408(16): 3424-3432
    [24] Leal C, Codony R, Compano R, et al. Determination of macrolide antibiotics by liquid chromatography[J]. Journal of Chromatography A, 2001, 910(2): 285-290
    [25] Garcia-Mayor M A, Garcinuno R M, Fernandez-Hernando P, et al. Liquid chromatography-UV diode-array detection method for multi-residue determination of macrolide antibiotics in sheep's milk[J]. Journal of Chromatography A, 2006, 1122(1/2): 76-83
    [26] Ramirez A J, Mottaleb M A, Brooks B W, et al. Analysis of pharmaceuticals in fish using liquid chromatography-tandem mass spectrometry[J]. Analytical Chemistry, 2007, 79(8): 3155-3163
    [27] McDonald M, Mannion C, Rafter P. A confirmatory method for the simultaneous extraction, separation, identification and quantification of Tetracycline, Sulphonamide, Trimethoprim and Dapsone residues in muscle by ultra-high-performance liquid chromatography-tandem mass spectrometry according to Commission Decision 2002/657/EC[J]. Journal of Chromatography A, 2009, 1216(46): 8110-8116
    [28] Bogialli S, D'Ascenzo G, Di Corcia A, et al. A simple and rapid assay based on hot water extraction and liquid chromatography-tandem mass spectrometry for monitoring quinolone residues in bovine milk[J]. Food Chemistry, 2008, 108(1): 354-360
    [29] Blasco C, Corcia A D, Picó Y. Determination of tetracyclines in multi-specie animal tissues by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry[J]. Food Chemistry, 2009, 116(4): 1005-1012
    [30] Jelic A, Petrovic M, Barcelo D. Multi-residue method for trace level determination of pharmaceuticals in solid samples using pressurized liquid extraction followed by liquid chromatography/quadrupole-linear ion trap mass spectrometry[J]. Talanta, 2009, 80(1): 363-371
    [31] Malintan N T, Mohd M A. Determination of sulfonamides in selected Malaysian swine wastewater by high-performance liquid chromatography[J]. Journal of Chromatography A, 2006, 1127(1/2): 154-160
    [32] Li J T, Chen L G, Wang X, et al. Determination of tetracyclines residues in honey by on-line solid-phase extraction high-performance liquid chromatography[J]. Talanta, 2008, 75(5): 1245-1252
    [33] Garces A, Zerzanova A, Kucera R, et al. Determination of a series of quinolones in pig plasma using solid-phase extraction and liquid chromatography coupled with mass spectrometric detection application to pharmacokinetic studies[J]. Journal of Chromatography A, 2006, 1137(1): 22-29
    [34] Wang L, Yang H, Zhang C W, et al. Determination of oxytetracycline, tetracycline and chloramphenicol antibiotics in animal feeds using subcritical water extraction and high performance liquid chromatography[J]. Analytica Chimica Acta, 2008, 619(1): 54-58
    [35] Schneider M J, Braden S E, Reyes-Herrera I, et al. Simultaneous determination of fluoroquinolones and tetracyclines in chicken muscle using HPLC with fluorescence detection[J]. Journal of Chromatography B, 2007, 846(1/2): 8-13
    [36] Nakata H, Kannan K, Jones P D, et al. Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection[J]. Chemosphere, 2005, 58(6): 759-766
    [37] Sun X L, He X W, Zhang Y K, et al. Determination of tetracyclines in food samples by molecularly imprinted monolithic column coupling with high performance liquid chromatography[J]. Talanta, 2009, 79(3): 926-934
    [38] Mamani M C V, Reyes F G R, Rath S. Multiresidue determination of tetracyclines, sulphonamides and chloramphenicol in bovine milk using HPLC-DAD[J]. Food Chemistry, 2009, 117(3): 545-552
    [39] Tsai W H, Huang T C, Huang J J, et al. Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection[J]. Journal of Chromatography A, 2009, 1216(12): 2263-2269
    [40] Lillenberg M, Yurchenko S, Kipper K, et al. Simultaneous determination of fluoroquinolones, sulfonamides and tetracyclines in sewage sludge by pressurized liquid extraction and liquid chromatography electrospray ionization-mass spectrometry[J]. Journal of Chromatography A, 2009, 1216(32): 5949-5954
    [41] Horie M, Takegami H, Toya K, et al. Determination of macrolide antibiotics in meat and fish by liquid chromatography-electrospray mass spectrometry[J]. Analytica Chimica Acta, 2003, 492(1/2): 187-197
    [42] Renew JHuang C. Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography-electrospray mass spectrometry[J]. Journal of Chromatography A, 2004, 1042(1/2): 113-121
    [43] Mitani K, Kataoka H. Determination of fluoroquinolones in environmental waters by in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta, 2006, 562(1): 16-22
    [44] Nieto A, Borrull F, Marce R M, et al. Selective extraction of sulfonamides, macrolides and other pharmaceuticals from sewage sludge by pressurized liquid extraction[J]. Journal of Chromatography A, 2007, 1174(1/2): 125-131
    [45] Tong L, Li P, Wang Y X, et al. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS[J]. Chemosphere, 2009, 74(8): 1090-1097
    [46] Lindberg R, Jarnheimer P A, Olsen B, et al. Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards[J]. Chemosphere, 2004, 57(10): 1479-1488
    [47] Jacobsen A M, Halling-Sørensen B, Ingerslev F, et al. Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2004, 1038(1/2): 157-170
    [48] Pailler J Y, Krein A, Pfister L, et al. Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg[J]. Science of the Total Environment, 2009, 407(16): 4736-4743
    [49] Yang S, Cha J, Carlson K. Simultaneous extraction and analysis of 11 tetracycline and sulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Journal of Chromatography A, 2005, 1097(1/2): 40-53
    [50] Balakrishnan V K, Terry K A, Toito J. Determination of sulfonamide antibiotics in wastewater: A comparison of solid phase microextraction and solid phase extraction methods[J]. Journal of Chromatography A, 2006, 1131(1/2): 1-10
    [51] McClure E LWong C S. Solid phase microextraction of macrolide, trimethoprim, and sulfonamide antibiotics in wastewaters[J]. Journal of Chromatography A, 2007, 1169(1/2): 53-62
    [52] Ding J, Ren N Q, Chen L G, et al. On-line coupling of solid-phase extraction to liquid chromatography-tandem mass spectrometry for the determination of macrolide antibiotics in environmental water[J]. Analytica Chimica Acta, 2009, 634(2): 215-221
    [53] Arnold D R, Granvil C P, Ward K W, et al. Quantitative determination of besifloxacin, a novel fluoroquinolone antimicrobial agent, in human tears by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography B, 2008, 867(1): 105-110
    [54] Zhang Z, Liu J F, Shao B, et al. Time-resolved fluoroimmunoassay as an advantageous approach for highly efficient determination of sulfonamides in environmental waters[J]. Environmental Science & Technology, 2010, 44(3): 1030-1035
    [55] Shelver W L, Shappell N W, Franek M, et al. ELISA for sulfonamides and its application for screening in water contamination[J]. Journal of Agricultural and Food Chemistry, 2008, 56(15): 6609-6615
    [56] Suri C R, Boro R, Nangia Y, et al. Immunoanalytical techniques for analyzing pesticides in the environment[J]. Trac-Trends in Analytical Chemistry, 2009, 28(1): 29-39
    [57] Franek M, Diblikova I, Cernoch I, et al. Broad-specificity immunoassays for sulfonamide detection: Immunochemical strategy for generic antibodies and competitors[J]. Analytical Chemistry, 2006, 78(5): 1559-1567
    [58] Peippo P, Hagren V, Lovgren T, et al. Rapid time-resolved fluoroimmunoassay for the screening of narasin and salinomycin residues in poultry and eggs[J]. Journal of Agricultural and Food Chemistry, 2004, 52(7): 1824-1828
    [59] Peippo P, Lovgren T, Tuomola M. Rapid screening of narasin residues in poultry plasma by time-resolved fluoroimmunoassay[J]. Analytica Chimica Acta, 2005, 529(1/2): 27-31
    [60] Langin A, Alexy R, Konig A, et al. Deactivation and transformation products in biodegradability testing of beta-lactams amoxicillin and piperacillin[J]. Chemosphere, 2009, 75(3): 347-354
    [61] Lindberg R H, Wennberg P, Johansson M I, et al. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in sweden[J]. Environmental Science & Technology, 2005, 39(10): 3421-3429
    [62] Xu W H, Zhang G, Li X D, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China[J]. Water Research, 2007, 41(19): 4526-4534
    [63] Batt A L, Kim S, Aga D S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations[J]. Chemosphere, 2007, 68(3): 428-435
    [64] Watkinson A J, Murby E J, Costanzo S D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling[J]. Water Research, 2007, 41(18): 4164-4176
    [65] Zuccato E, Castiglioni S, Bagnati R, et al. Source, occurrence and fate of antibiotics in the Italian aquatic environment[J]. Journal of Hazardous Materials, 2010, 179(1/3): 1042-1048
    [66] Rosal R, Rodríguez A, Perdigón-Melón J A, et al. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation[J]. Water Research, 2010, 44(2): 578-588
    [67] Hijosa-Valsero M, Fink G, Schlüsener M P, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization[J]. Chemosphere, 2011, 83(5): 713-719
    [68] Sim W J, Lee J W, Lee E S, et al. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures[J]. Chemosphere, 2011, 82(2): 179-186
    [69] Leung H W, Minh T B, Murphy M B, et al. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China[J]. Environment International, 2012, 42:1-9
    [70] Gao L H, Shi Y L, Li W H, et al. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China[J]. Chemosphere, 2012, 86(6): 665-671
    [71] Wei R C, Ge F, Huang S Y, et al. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China[J]. Chemosphere, 2011, 82(10): 1408-1414
    [72] Duong H A, Pham N H, Nguyen H T, et al. Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam[J]. Chemosphere, 2008, 72(6): 968-973
    [73] Zou S C, Xu W H, Zhang R J, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities[J]. Environmental Pollution, 2011, 159(10): 2913-2920
    [74] Xu W H, Zhang G, Zou S C, et al. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Environmental Pollution, 2007, 145(3): 672-679
    [75] Jiang L, Hu X, Yin D, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6): 822-828
    [76] Wiegel S, Aulinger A, Brockmeyer R, et al. Pharmaceuticals in the river Elbe and its tributaries[J]. Chemosphere, 2004, 57(2): 107-126
    [77] Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999—2000: A national reconnaissance[J]. Environmental Science & Technology, 2002, 36(6): 1202-1211
    [78] Calamari D, Zuccato E, Castiglioni S, et al. Strategic survey of therapeutic drugs in the rivers Po and Lambro in Northern Italy[J]. Environmental Science & Technology, 2003, 37(7): 1241-1248
    [79] Kim S CCarlson K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices[J]. Environmental Science & Technology, 2007, 41(1): 50-57
    [80] Managaki S, Murata A, Takada H, et al. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: Ubiquitous occurrence of veterinary antibiotics in the Mekong Delta[J]. Environmental Science & Technology, 2007, 41(23): 8004-8010
    [81] Xu W H, Zhang G, Zou S C, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its Tributaries, China[J]. Water Environment Research, 2009, 81(3): 248-254
    [82] Gulkowska A, He Y, So M K, et al. The occurrence of selected antibiotics in Hong Kong coastal waters[J]. Marine Pollution Bulletin, 2007, 54(8): 1287-1293
    [83] Tamtam F, Mercier F, Le Bot B, et al. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions[J]. Science of the Total Environment, 2008, 393(1): 84-95
    [84] Gao L H, Shi Y L, Li W H, et al. Occurrence, distribution and bioaccumulation of antibiotics in the Haihe River in China[J]. Journal of Environmental Monitoring, 2012, 14(4): 1248-1255
    [85] Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China[J]. Environmental Pollution, 2010, 158(9): 2992-2998
    [86] Lindsey M E, Meyer M, Thurman E M. Analysis of trace levels of sulfonamide and tetracycline antimicrobials, in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry[J]. Analytical Chemistry, 2001, 73(19): 4640-4646
    [87] Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotics in the aquatic environment[J]. Science of the Total Environment, 1999, 225(1/2): 109-118
    [88] Holm J V, Rugge K, Bjerg P L, et al. Occurrence and distribution of pharmaceutical organic-compounds in the groundwater downgradient of a landfill (grindsted, denmark)[J]. Environmental Science & Technology, 1995, 29(5): 1415-1420
    [89] Vieno N M, Härkki H, Tuhkanen T, et al. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant[J]. Environmental Science & Technology, 2007, 41(14): 5077-5084
    [90] Zuccato E, Calamari D, Natangelo M, et al. Presence of therapeutic drugs in the environment[J]. Lancet, 2000, 355(9217): 1789-1790
    [91] Benotti M J, Trenholm R A, Vanderford B J, et al. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water[J]. Environmental Science & Technology, 2009, 43(3): 597-603
    [92] Ye Z Q, Weinberg H S, Meyer M T. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry[J]. Analytical Chemistry, 2007, 79(3): 1135-1144
    [93] Sacher F, Lang F T, Brauch H J, et al. Pharmaceuticals in groundwatersAnalytical methods and results of a monitoring program in Baden-Wurttemberg, Germany[J]. Journal of Chromatography A, 2001, 938(1/2): 199-210
    [94] Hamscher G, Pawelzick H T, Hoper H, et al. Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure[J]. Environmental Toxicology and Chemistry, 2005, 24(4): 861-868
    [95] Zhou L J, Ying G G, Zhao J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China[J]. Environmental Pollution, 2011, 159(7): 1877-1885
    [96] Golet E M, Xifra I, Siegrist H, et al. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil[J]. Environmental Science & Technology, 2003, 37(15): 3243-3249
    [97] Lindberg R H, Olofsson U, Rendahl P, et al. Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge[J]. Environmental Science & Technology, 2006, 40(3): 1042-1048
    [98] Spongberg A L, Witter J D. Pharmaceutical compounds in the wastewater process stream in Northwest Ohio[J]. Science of the Total Environment, 2008, 397(1/3): 148-157
    [99] Okuda T, Yamashita N, Tanaka H, et al. Development of extraction method of pharmaceuticals and their occurrences found in Japanese wastewater treatment plants[J]. Environment International, 2009, 35(5): 815-820
    [100] Jacobsen A M, Halling-Sorensen B, Ingerslev F, et al. Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2004, 1038(1/2): 157-170
    [101] Karci A, Balcloğlu I A. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey[J]. Science of the Total Environment, 2009, 407(16): 4652-4664
    [102] Brambilla G, Patrizii M, De Filippis S P, et al. Oxytetracycline as environmental contaminant in arable lands[J]. Analytica Chimica Acta, 2007, 586(1/2): 326-329
    [103] Tamtam F, van Oort F, Le Bot B, et al. Assessing the fate of antibiotic contaminants in metal contaminated soils four years after cessation of long-term waste water irrigation[J]. Science of the Total Environment, 2011, 409(3): 540-547
    [104] 谢东华, 俞雪钧, 殷居易, 等. 烤鳗中氟喹诺酮类多残留检测方法的研究[J]. 中国卫生检验杂志, 2008, 18(6): 969-971
    [105] Li W H, Shi Y L, Gao L H, et al. Investigation of antibiotics in mollusks from coastal waters in the Bohai Sea of China[J]. Environmental Pollution, 2012, 162: 56-62
    [106] 聂湘平, 何秀婷, 杨永涛, 等. 珠江三角洲养殖水体中喹诺酮类药物残留分析[J]. 环境科学, 2009, 30(1): 266-270
    [107] Kumar K, Gupta S C, Baidoo S K, et al. Antibiotic uptake by plants from soil fertilized with animal manure[J]. Journal of Environmental Quality, 2005, 34(6): 2082-2085
    [108] Dolliver H, Kumar K, Gupta S. Sulfamethazine uptake by plants from manure-amended soil[J]. Journal of Environmental Quality, 2007, 36(4): 1224-1230
    [109] Grote M, Schwake-Anduschus C, Michel R, et al. Incorporation of veterinary antibiotics into crops from manured soil[J]. Landbauforschung Volkenrode, 2007, 57(1): 25-32
    [110] Boxall A B A, Johnson P, Smith E J, et al. Uptake of veterinary medicines from soils into plants[J]. Journal of Agricultural and Food Chemistry, 2006, 54(6): 2288-2297
    [111] Tolls J. Sorption of veterinary pharmaceuticals in soils: A review[J]. Environmental Science & Technology, 2001, 35(17): 3397-3406
    [112] 王冉, 刘铁铮, 王恬. 抗生素在环境中的转归及其生态毒性[J]. 生态学报, 2006, 26(1): 265-270
    [113] Christian T, Schneider R J, Farber H A, et al. Determination of antibiotic residues in manure, soil, and surface waters[J]. Acta Hydrochimica et Hydrobiologica, 2003, 31(1): 36-44
    [114] Werner J J, Arnold W A, McNeill K. Water hardness as a photochemical parameter: Tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH[J]. Environmental Science & Technology, 2006, 40(23): 7236-7241
    [115] Halling-Sorensen B. Algal toxicity of antibacterial agents used in intensive farming[J]. Chemosphere, 2000, 40(7): 731-739
    [116] Gartiser S, Urich E, Alexy R, et al. Ultimate biodegradation and elimination of antibiotics in inherent tests[J]. Chemosphere, 2007, 67(3): 604-613
    [117] Junker T, Alexy R, Knacker T, et al. Biodegradability of C-14-labeled antibiotics in a modified laboratory scale sewage treatment plant at environmentally relevant concentrations[J]. Environmental Science & Technology, 2006, 40(1): 318-324
    [118] Carucci A, Cappai G, Piredda M. Biodegradability and toxicity of pharmaceuticals in biological wastewater treatment plants[J]. Journal of Environmental Science and Health Part A, 2006, 41(9): 1831-1842
    [119] Kim S, Eichhorn P, Jensen J N, et al. Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process[J]. Environmental Science & Technology, 2005, 39(15): 5816-5823
    [120] Hektoen H, Berge J A, Hormazabal V, et al. Persistence of antibacterial agents in marine-sediments[J]. Aquaculture, 1995, 133(3/4): 175-184
    [121] Capone D G, Weston D P, Miller V, et al. Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture[J]. Aquaculture, 1996, 145(1/4): 55-75
    [122] Marengo J R, Kok R A, OBrien K, et al. Aerobic biodegradation of (C-14)-sarafloxacin hydrochloride in soil[J]. Environmental Toxicology and Chemistry, 1997, 16(3): 462-471
    [123] Lai H T, Chien Y H, Lin J S. Long-term transformation of oxolinic acid in water from an eel pond[J]. Aquaculture, 2008, 275(1/4): 96-101
    [124] Maki T, Hasegawa H, Kitami H, et al. Bacterial degradation of antibiotic residues in marine fish farm sediments of Uranouchi Bay and phylogenetic analysis of antibiotic-degrading bacteria using 16S rDNA sequences[J]. Fisheries Science, 2006, 72(4): 811-820
    [125] Li K X, Yediler A, Yang M, et al. Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products[J]. Chemosphere, 2008, 72(3): 473-478
    [126] Dantas R F, Contreras S, Sans C, et al. Sulfamethoxazole abatement by means of ozonation[J]. Journal of Hazardous materials, 2008, 150(3): 790-794
    [127] Didelupis G D, Macri A, Civitareale C, et al. Antibiotics of zootechnical use-effects of acute high and low-dose contamination on daphnia-magna straus[J]. Aquatic Toxicology, 1992, 22(1): 53-59
    [128] Lanzky P F, HallingSorensen B. The toxic effect of the antibiotic metronidazole on aquatic organisms[J]. Chemosphere, 1997, 35(11): 2553-2561
    [129] Migliore L, Civitareale C, Brambilla G, et al. Toxicity of several important agricultural antibiotics to Artemia[J]. Water Research, 1997, 31(7): 1801-1806
    [130] Wollenberger L, Halling-Sorensen B, Kusk K O. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna[J]. Chemosphere, 2000, 40(7): 723-730
    [131] Batchelder A R. Chlortetracycline and Oxytetracycline Effects on Plant-Growth and Development in Soil Systems[J]. Journal of Environmental Quality, 1982, 11(4): 675-678
    [132] Baguer A J, Jensen J, Krogh P H. Effects of the antibiotics oxytetracycline and tylosin on soil fauna[J]. Chemosphere, 2000, 40(7): 751-757
    [133] Migliore L, Brambilla G, Casoria P, et al. Effect of sulphadimethoxine contamination on barley (Hordeum distichum L, Poaceae, Liliopsida)[J]. Agriculture Ecosystems & Environment, 1996, 60(2/3): 121-128
    [134] Migliore L, Brambilla G, Cozzolino S, et al. Effect on Plants of Sulfadimethoxine Used in Intensive Farming (Panicum-Miliacaum, Pisum-Sativum and Zea-Mays)[J]. Agriculture Ecosystems & Environment, 1995, 52(2/3): 103-110
    [135] Migliore L, Civitareale C, Cozzolino S, et al. Laboratory models to evaluate phytotoxicity of sulphadimethoxine on terrestrial plants[J]. Chemosphere, 1998, 37(14-15): 2957-2961
    [136] Thiele-Bruhn S, Beck I. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass[J]. Chemosphere, 2005, 59(4): 457-465
    [137] Naslund J, Hedman J E, Agestrand C. Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment[J]. Aquatic Toxicology, 2008, 90(3): 223-227
    [138] Halling-Sorensen B. Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents[J]. Archives of Environmental Contamination and Toxicology, 2001, 40(4): 451-460
    [139] Halling-Sorensen B, Sengelov G, Tjornelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria[J]. Archives of Environmental Contamination and Toxicology, 2002, 42(3): 263-271
    [140] Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants: Studies in northern colorado [J]. Environmental Science & Technology, 2006, 40(23): 7445-7450
    [141] Zhang X X, Zhang T. Occurrence, Abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations[J]. Environmental Science & Technology, 2011, 45(7): 2598-2604
    [142] Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010, 44(19): 7220-7225
    [143] Schmitt H, Stoob K, Hamscher G, et al. Tetracyclines and tetracycline resistance in agricultural soils: Microcosm and field studies[J]. Microbial Ecology, 2006, 51(3): 267-276
    [144] Chee-Sanford J C, Aminov R I, Krapac I J, et al. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities[J]. Applied and Environmental Microbiology, 2001, 67(4): 1494-1502
    [145] Seveno N A, Kallifidas D, Smalla K, et al. Occurrence and reservoirs of antibiotic resistance genes in the environment[J]. Reviews in Medical Microbiology, 2002, 13(1): 15-27
    [146] Smith M S, Yang R K, Knapp C W, et al. Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR[J]. Applied and Environmental Microbiology, 2004, 70(12): 7372-7377
    [147] Peak N, Knapp C W, Yang R K, et al. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies[J]. Environmental Microbiology, 2007, 9(1): 143-151
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 9.4 %DOWNLOAD: 9.4 %FULLTEXT: 81.9 %FULLTEXT: 81.9 %META: 8.7 %META: 8.7 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 85.4 %其他: 85.4 %Antalya: 0.1 %Antalya: 0.1 %Ashburn: 1.2 %Ashburn: 1.2 %Beijing: 2.6 %Beijing: 2.6 %Bogra: 0.1 %Bogra: 0.1 %Brooklyn: 0.1 %Brooklyn: 0.1 %Changsha: 0.4 %Changsha: 0.4 %Chengdu: 0.2 %Chengdu: 0.2 %Dalang: 0.1 %Dalang: 0.1 %Dalian: 0.1 %Dalian: 0.1 %Dunhou: 0.5 %Dunhou: 0.5 %Edinburgh: 0.1 %Edinburgh: 0.1 %Enshi: 0.2 %Enshi: 0.2 %Fuzhou: 0.1 %Fuzhou: 0.1 %Hangzhou: 0.7 %Hangzhou: 0.7 %Jianguang: 0.1 %Jianguang: 0.1 %Jinan: 0.1 %Jinan: 0.1 %Jinchang: 0.1 %Jinchang: 0.1 %Ledoje: 0.1 %Ledoje: 0.1 %luohe shi: 0.1 %luohe shi: 0.1 %Newark: 0.3 %Newark: 0.3 %Oshawa: 0.9 %Oshawa: 0.9 %Qingdao: 0.3 %Qingdao: 0.3 %Reading: 0.1 %Reading: 0.1 %Shanghai: 0.9 %Shanghai: 0.9 %Shijiazhuang: 0.1 %Shijiazhuang: 0.1 %Taiyuan: 0.3 %Taiyuan: 0.3 %Taiyuanshi: 0.1 %Taiyuanshi: 0.1 %Taoyuan District: 0.1 %Taoyuan District: 0.1 %Tianjin: 0.2 %Tianjin: 0.2 %Wuhan: 0.1 %Wuhan: 0.1 %Wuxi: 0.1 %Wuxi: 0.1 %Xiamen: 0.3 %Xiamen: 0.3 %Xicheng District: 0.1 %Xicheng District: 0.1 %Xingfeng: 0.1 %Xingfeng: 0.1 %XX: 2.1 %XX: 2.1 %Yuyue: 0.1 %Yuyue: 0.1 %Zhongba: 0.1 %Zhongba: 0.1 %上海: 0.1 %上海: 0.1 %保定: 0.1 %保定: 0.1 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.2 %北京: 0.2 %十堰: 0.1 %十堰: 0.1 %成都: 0.1 %成都: 0.1 %杭州: 0.1 %杭州: 0.1 %芜湖: 0.1 %芜湖: 0.1 %苏州: 0.1 %苏州: 0.1 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %长沙: 0.1 %长沙: 0.1 %其他AntalyaAshburnBeijingBograBrooklynChangshaChengduDalangDalianDunhouEdinburghEnshiFuzhouHangzhouJianguangJinanJinchangLedojeluohe shiNewarkOshawaQingdaoReadingShanghaiShijiazhuangTaiyuanTaiyuanshiTaoyuan DistrictTianjinWuhanWuxiXiamenXicheng DistrictXingfengXXYuyueZhongba上海保定内网IP北京十堰成都杭州芜湖苏州郑州重庆长沙Highcharts.com
计量
  • 文章访问数:  4752
  • HTML全文浏览数:  4010
  • PDF下载数:  2135
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-03-05
高立红, 史亚利, 厉文辉, 刘杰民, 蔡亚岐. 抗生素环境行为及其环境效应研究进展[J]. 环境化学, 2013, 32(9): 1619-1633. doi: 10.7524/j.issn.0254-6108.2013.09.004
引用本文: 高立红, 史亚利, 厉文辉, 刘杰民, 蔡亚岐. 抗生素环境行为及其环境效应研究进展[J]. 环境化学, 2013, 32(9): 1619-1633. doi: 10.7524/j.issn.0254-6108.2013.09.004
GAO Lihong, SHI Yali, LI Wenhui, LIU Jiemin, CAI Yaqi. Environmental behavior and impacts of antibiotics[J]. Environmental Chemistry, 2013, 32(9): 1619-1633. doi: 10.7524/j.issn.0254-6108.2013.09.004
Citation: GAO Lihong, SHI Yali, LI Wenhui, LIU Jiemin, CAI Yaqi. Environmental behavior and impacts of antibiotics[J]. Environmental Chemistry, 2013, 32(9): 1619-1633. doi: 10.7524/j.issn.0254-6108.2013.09.004

抗生素环境行为及其环境效应研究进展

  • 1.  中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室, 北京, 100085;
  • 2.  北京科技大学化学与生物工程学院, 北京, 100083
基金项目:

国家自然科学基金项目(20837003, 20890111, 20921063)资助.

摘要: 抗生素作为一类抗菌性药物广泛用于预防和治疗人类和动物疾病,并且在畜牧和水产养殖业中用于促进动物的生长.进入人和动物体内的抗生素不能被生物体完全吸收,大部分以原药或代谢物的形式经由尿液和粪便排出体外进入环境中.抗生素是环境中一类新型污染物,由于其使用量大和诱导产生抗生素耐药菌株,对人类健康和生态环境构成威胁,近年来受到日益广泛的关注.抗生素诱导产生的抗性基因(ARGs)也已经被定义为环境中一类新型污染物.本文介绍了抗生素的使用现状、环境来源以及不同环境介质中抗生素的分析方法和污染现状,并且对其吸附降解行为、毒性效应以及ARGs进行了讨论,最后指出了目前研究中存在的问题,并对未来研究进行了展望.在今后,应该更加系统地研究环境中抗生素的污染现状及其迁移转化等行为;开展低剂量长期慢性毒性和复合毒性效应研究;加强对环境中ARGs的污染现状和环境行为研究.

English Abstract

参考文献 (147)

返回顶部

目录

/

返回文章
返回