天然气全氧燃烧尾气生活垃圾气化热力学分析

庞赟佶, 李姝姝, 陈义胜, 沈胜强, 何丽娟. 天然气全氧燃烧尾气生活垃圾气化热力学分析[J]. 环境工程学报, 2016, 10(12): 7217-7222. doi: 10.12030/j.cjee.201508055
引用本文: 庞赟佶, 李姝姝, 陈义胜, 沈胜强, 何丽娟. 天然气全氧燃烧尾气生活垃圾气化热力学分析[J]. 环境工程学报, 2016, 10(12): 7217-7222. doi: 10.12030/j.cjee.201508055
PANG Yunji, LI Shushu, CHEN Yisheng, SHEN Shengqiang, HE Lijuan. Thermodynamic analysis of municipal solid waste with oxy-combustion products of natural gas gasification[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7217-7222. doi: 10.12030/j.cjee.201508055
Citation: PANG Yunji, LI Shushu, CHEN Yisheng, SHEN Shengqiang, HE Lijuan. Thermodynamic analysis of municipal solid waste with oxy-combustion products of natural gas gasification[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7217-7222. doi: 10.12030/j.cjee.201508055

天然气全氧燃烧尾气生活垃圾气化热力学分析

  • 基金项目:

    国家自然科学基金资助项目(51566014)

    内蒙古自治区自然科学基金资助项目(2015MS0106)

    内蒙古自治区高校研究项目(NJZY16159)

  • 中图分类号: X705

Thermodynamic analysis of municipal solid waste with oxy-combustion products of natural gas gasification

  • Fund Project:
  • 摘要: 基于Aspen Plus模拟平台,运用吉布斯能最小化原理,以天然气全氧燃烧尾气(后续称为烟气)作为气化剂,选取反应温度和烟气流量与生活垃圾量比(E/M)作为影响因素,气化炉温度变化范围为400~1 500℃,E/M范围0~3.0,对几种典型生活垃圾(木屑、纸屑、塑料、橡胶和厨余)气化进行模拟计算。模拟结果表明,以烟气作为生活垃圾气化剂,可制备富氢产品气,产品气为中热值燃气。温度在800℃左右时,H2的体积分数达到峰值46.75%,反应温度大于800℃时,反应温度的增加对提升产品气的热值、CO的含量有一定作用,但H2的含量和产品气产率有所下降,反应温度过高增加气化的能源投入,反应温度应控制在800~1 000℃范围。高温烟气的过量导致产品气热值和品质下降,E/M宜控制在0.4~1.0区间范围。
  • [1] 袁浩然, 鲁涛, 熊祖鸿, 等. 城市生活垃圾热解气化技术研究进展.化工进展, 2012, 31(2):421-427 YUAN Haoran, LU Tao, XIONG Zuhong, et al. Advance in pyrolysis and gasification of municipal solid waste study. Chemical Industry and Engineering Progress, 2012, 31(2):421-427(in Chinese)
    [2] CHENG Hefa, HU Yuanan. Municipal solid waste (MSW) as a renewable source of energy:Current and future practices in China. Bioresource Technology, 2010, 101:3816-3824
    [3] 牛永红, 马黎军, 陈义胜, 等. 下吸式气化炉木屑高温蒸汽气化制取富H实验. 农业机械学报, 2015, 46(4):189-193 NIU Yonghong, MA Lijun, CHEN Yisheng, et al. Performance of downdraft gasifier for hydrogen-rich gas by high temperature steam gasification of biomass. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4):189-193(in Chinese)
    [4] AHMED I., GUPTA A. K. Characteristic of hydrogen and syngas evolution from gasification and pyrolysis of rubber. International Journal of Hydrogen Energy, 2011, 36(7):4340-4347
    [5] 高宁博. 高温过热水蒸气的制备及生物质高温气化重整制氢特性研究. 大连:大连理工大学博士学位论文, 2009 GAO Ningbo. High temperature steam production and studies of Hydrogen-rich gas from high temperature steam gasification and reforming of biomass. Dalian:Doctor Dissertation of Dalian University of Technology, 2009(in Chinese)
    [6] ZHANG Qinglin, DOR LIRAN, ZHANG Lan, et al. Performance analysis of municipal solid waste gasification with steam in a plasma gasificati on melting reactor. Applied Energy, 2012, 98:219-229
    [7] MANI T., MAHINPEYN N., MURUGAN P. Reaction kinetics and mass transfer studies of biomass char gasification with CO2. Chemical Engineering Science, 2011, 66(1):36-41
    [8] 耿巍巍, 左海滨, 王广伟, 等. 生物质焦和煤焦等温CO气化动力学研究. 热力发电, 2015, 44(5):102-107 GENG Weiwei, ZUO Haibin, WANG Guangwei, et al. Isothermal study of gasification process of biomass char and coal char in CO2 atmosphere. Thermal Power Generation, 2015, 44(5):102-107(in Chinese)
    [9] 杨雪娇, 邹雄, 王兵, 等. 生物质二氧化碳气化过程模拟分析. 化学工程, 2015, 43(4):64-68 YANG Xuejiao, ZOU Xiong, WANG Bing, et al. Simulation and analysis of biomass CO2 gasification process. Chemical Engineering, 2015, 43(4):64-68(in Chinese)
    [10] 王燕杰, 应浩, 江俊飞. 生物质二氧化碳气化综述. 林产化学与工业, 2013, 33(6):121-127 WANG Yanjie, YING Hao, JIANG Junfei. A review of biomass carbon dioxide gasification. Chemistry and Industry of Forest Products, 2013, 33(6):121-127(in Chinese)
    [11] 牛淼淼, 黄亚继, 金保昇, 等. 林业废弃物氧气-水蒸气气化的Aspen Plus模拟. 东南大学学报(自然科学版), 2013, 43(1):142-146 NIU Miaomiao, HUANG Yaji, JIN Baosheng, et al. Simulation of forestry residue oxygen-steam gasification with Aspen Plus. Journal of Southeast University (Natural Science Edition), 2013, 43(1):142-146(in Chinese)
    [12] 陈冠益, 刘宗攀, 赵晓, 等. 基于Aspen Plus的甘油与生物质固定床共气化制氢工艺模拟. 天津大学学报(自然科学与工程技术版), 2014, 47(4):331-335 CHEN Guanyi, LIU Zongpan, ZHAO Xiao, et al. Simulation of co-gasification of glycerin and biomass in fixed bed for hydrogen production by Aspen Plus. Journal of Tianjin University (Science and Technology), 2014, 47(4):331-335(in Chinese)
    [13] 温俊明. 城市生活垃圾热解特性试验研究及预测模型. 杭州:浙江大学博士学位论文, 2009 WEN Junming. Experimental study on the pyrolysis characteristics of MSW and its prediction model. Hangzhou:Doctor Dissertation of Zhejiang University, 2009(in Chinese)
    [14] 王晶博. 城市生活垃圾原位水蒸气催化气化制备富氢燃气. 武汉:华中科技大学博士学位论文, 2013 WANG Jingbo. Hydrogen-rich gas production from catalytic gasification of Municipal Solid Waste (MSW) with in-situ steam agent. Wuhan:Doctor Dissertation of Huazhong University of Science and Technology, 2013(in Chinese)
    [15] 钱红亮, 杨婷婷, 刘畅, 等. 木材热解过程的热化学平衡分析. 化工学报, 2014, 65(5):1622-1628 QIAN Hongliang, YANG Tingting, LIU Chang, et al. Thermochemical equilibrium analysis for wood pyrolysis. CIESC Journal, 2014, 65(5):1622-1628(in Chinese)
  • 期刊类型引用(2)

    1. 王靖, 纪毓昭, 朱陈程, 赵新颖. 渔船主机尾气余热制冷发生器围壁破裂分析及对策. 渔业现代化. 2019(03): 58-65 . 百度学术
    2. 李叶青, 汪宣乾, 王加军, 章鹏. 基于完全燃烧模型下市政垃圾衍生燃料在水泥窑分解炉内热贡献的研究. 水泥. 2019(09): 14-18 . 百度学术

    其他类型引用(0)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 1.3 %DOWNLOAD: 1.3 %FULLTEXT: 91.9 %FULLTEXT: 91.9 %META: 6.7 %META: 6.7 %DOWNLOADFULLTEXTMETAHighcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 90.4 %其他: 90.4 %Ashburn: 0.2 %Ashburn: 0.2 %Chengdu: 0.4 %Chengdu: 0.4 %Hangzhou: 0.7 %Hangzhou: 0.7 %Kunshan: 0.2 %Kunshan: 0.2 %Montreal: 0.2 %Montreal: 0.2 %Shanghai: 0.2 %Shanghai: 0.2 %Shijiazhuang: 0.2 %Shijiazhuang: 0.2 %Tianjin: 0.2 %Tianjin: 0.2 %Xingfeng: 0.7 %Xingfeng: 0.7 %XX: 3.8 %XX: 3.8 %Yuncheng: 0.2 %Yuncheng: 0.2 %上海: 0.2 %上海: 0.2 %北京: 0.4 %北京: 0.4 %宜昌: 0.2 %宜昌: 0.2 %河池: 0.2 %河池: 0.2 %济南: 0.4 %济南: 0.4 %郑州: 0.9 %郑州: 0.9 %其他AshburnChengduHangzhouKunshanMontrealShanghaiShijiazhuangTianjinXingfengXXYuncheng上海北京宜昌河池济南郑州Highcharts.com
计量
  • 文章访问数:  1627
  • HTML全文浏览数:  1288
  • PDF下载数:  457
  • 施引文献:  2
出版历程
  • 收稿日期:  2015-09-24
  • 刊出日期:  2016-12-08
庞赟佶, 李姝姝, 陈义胜, 沈胜强, 何丽娟. 天然气全氧燃烧尾气生活垃圾气化热力学分析[J]. 环境工程学报, 2016, 10(12): 7217-7222. doi: 10.12030/j.cjee.201508055
引用本文: 庞赟佶, 李姝姝, 陈义胜, 沈胜强, 何丽娟. 天然气全氧燃烧尾气生活垃圾气化热力学分析[J]. 环境工程学报, 2016, 10(12): 7217-7222. doi: 10.12030/j.cjee.201508055
PANG Yunji, LI Shushu, CHEN Yisheng, SHEN Shengqiang, HE Lijuan. Thermodynamic analysis of municipal solid waste with oxy-combustion products of natural gas gasification[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7217-7222. doi: 10.12030/j.cjee.201508055
Citation: PANG Yunji, LI Shushu, CHEN Yisheng, SHEN Shengqiang, HE Lijuan. Thermodynamic analysis of municipal solid waste with oxy-combustion products of natural gas gasification[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7217-7222. doi: 10.12030/j.cjee.201508055

天然气全氧燃烧尾气生活垃圾气化热力学分析

  • 1.  内蒙古科技大学能源与环境学院, 包头 014010
  • 2.  大连理工大学能源与动力学院, 大连 116023
基金项目:

国家自然科学基金资助项目(51566014)

内蒙古自治区自然科学基金资助项目(2015MS0106)

内蒙古自治区高校研究项目(NJZY16159)

摘要: 基于Aspen Plus模拟平台,运用吉布斯能最小化原理,以天然气全氧燃烧尾气(后续称为烟气)作为气化剂,选取反应温度和烟气流量与生活垃圾量比(E/M)作为影响因素,气化炉温度变化范围为400~1 500℃,E/M范围0~3.0,对几种典型生活垃圾(木屑、纸屑、塑料、橡胶和厨余)气化进行模拟计算。模拟结果表明,以烟气作为生活垃圾气化剂,可制备富氢产品气,产品气为中热值燃气。温度在800℃左右时,H2的体积分数达到峰值46.75%,反应温度大于800℃时,反应温度的增加对提升产品气的热值、CO的含量有一定作用,但H2的含量和产品气产率有所下降,反应温度过高增加气化的能源投入,反应温度应控制在800~1 000℃范围。高温烟气的过量导致产品气热值和品质下降,E/M宜控制在0.4~1.0区间范围。

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回