首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进支持向量回归机的污水处理厂出水总氮预测模型
引用本文:刘杰, 李佟, 李军. 基于改进支持向量回归机的污水处理厂出水总氮预测模型[J]. 环境工程学报, 2018, 12(1): 119-126. doi: 10.12030/j.cjee.201706050
作者姓名:刘杰  李佟  李军
作者单位:1.太原理工大学环境科学与工程学院,太原 030024; 2.北京工业大学建筑工程学院,北京 100124; 3.北京城市排水集团有限责任公司,北京 100044
基金项目:国家水体污染控制与治理科技重大专项(2014ZX07201-001)
摘    要:在小样本数据的情况下,采用粒子群优化算法(PSO)对传统支持向量回归机(SVR)进行改进,将其应用于北京某大型污水处理厂出水总氮浓度预测上。 预测结果精度对比分析表明,PSO-SVR模型预测结果平均相对误差为1.836%,决定系数为67.76%,均方根误差为0.693 9,各评价指标均优于多元线性回归模型、BP神经网络模型。因此在小样本情况下,利用PSO-SVR模型对污水处理厂出水总氮浓度进行预测是可行有效的,为应用数据驱动模型对污水处理过程进行建模模拟提供了一种新方法尝试。

关 键 词:污水处理   数据驱动模型   支持向量回归机   粒子群优化算法

Prediction of effluent total nitrogen concentration in a wastewater treatment plant using a particle swarm optimization-support vector regression model
LIU Jie, LI Tong, LI Jun. Prediction of effluent total nitrogen concentration in a wastewater treatment plant using a particle swarm optimization-support vector regression model[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 119-126. doi: 10.12030/j.cjee.201706050
Authors:LIU Jie  LI Tong  LI Jun
Affiliation:1.College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 2.College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China; 3.Beijing Drainage Group Co.Ltd., Beijing 100044, China
Abstract:A particle swarm optimization (PSO)-support vector regression (SVR) was built based on small sample and applied it to predict effluent total nitrogen concentration in a wastewater treatment plant. The analysis of prediction accuracies indicated that the mean relative error (MRE) is 1.836%, the coefficient of determination (R2) is 67.76% as well as the root mean square error (RMSE) is 0.693 9. In addition, the accuracy of the PSO-SVR model was analyzed by comparison with the multivariable linear regression (MLR) model and the BP neural network (BP-ANN). The results indicated that the PSO-SVR model is better than MLR and BP-ANN in prediction of effluent total nitrogen concentration in a wastewater treatment plant. Therefore, it is feasible and effective to predict effluent total nitrogen concentration in a wastewater treatment plant by using PSO-SVR model, which provides the method to modeling the process of wastewater treatment.
Keywords:wastewater treatment  data-driven modeling  support vector regression  particle swarm optimization
本文献已被 CNKI 等数据库收录!
点击此处可从《环境工程学报》浏览原始摘要信息
点击此处可从《环境工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号