首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应遗传小波神经网络的水质评价建模
引用本文:任金霞,余志武,游鑫. 基于自适应遗传小波神经网络的水质评价建模[J]. 环境工程, 2015, 33(5): 144-148. DOI: 10.13205/j.hjgc.201505031
作者姓名:任金霞  余志武  游鑫
作者单位:江西理工大学电气工程及自动化学院,江西赣州,341000
基金项目:国家自然科学基金( 61262013) 。
摘    要:水环境污染过程的非确定性和非线性,使得传统的水质评价方法存在局限性。为了提高水质评价的准确性,提出了一种基于改进小波神经网络(wavelet neural network,WNN)的水质评价模型。采用自适应遗传算法(adaptive genetic algorithm,AGA)对小波神经网络的初始权值进行优化,再通过小波神经网络算法对网络进行训练,最后对训练好的网络展开测试。仿真结果表明,自适应遗传算法和小波神经网络的结合提高了网络的训练效率,该方法可以用于水质评价建模,并且评价结果具有较高的精度和准确性。

关 键 词:小波神经网络  水质评价  遗传算法  自适应  评价模型

MODEL FOR WATER QUALITY EVALUATION BASED ON WAVELET NEURAL NETWORK OF ADAPTIVE GENETIC ALGORITHM
Ren Jinxia,Yu Zhiwu,You Xin. MODEL FOR WATER QUALITY EVALUATION BASED ON WAVELET NEURAL NETWORK OF ADAPTIVE GENETIC ALGORITHM[J]. Environmental Engineering, 2015, 33(5): 144-148. DOI: 10.13205/j.hjgc.201505031
Authors:Ren Jinxia  Yu Zhiwu  You Xin
Abstract:The nonlinearity and uncertainty of water environmental pollution make the traditional water quality evaluation methods have limitations. In order to improve the accuracy of water quality evaluation,the paper put forward a water quality evaluation model based on improved wavelet neural network ( WNN) . The initial weights of the wavelet neural network was optimized based on adaptive genetic algorithm ( AGA) ,and then training the network was trained by using the wavelet neural network algorithm,and finally,the trained network was tested. The simulation results showed that the combination of adaptive genetic algorithm and wavelet neural network improved the efficiency of network training, and this method could be used in for model of water quality evaluation,and the evaluation result would have higher precision and accuracy.
Keywords:wavelet neural network  water quality evaluation  genetic algorithm  adaptive  evaluation model
本文献已被 CNKI 等数据库收录!
点击此处可从《环境工程》浏览原始摘要信息
点击此处可从《环境工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号