首页 | 本学科首页   官方微博 | 高级检索  
     

基于LUR模型的PM2.5浓度空间分布监测及分析
引用本文:王睿哲, 胡荣明, 李朋飞, 周晨. 基于LUR模型的PM2.5浓度空间分布监测及分析[J]. 环境工程学报, 2020, 14(10): 2843-2852. doi: 10.12030/j.cjee.201912156
作者姓名:王睿哲  胡荣明  李朋飞  周晨
作者单位:西安科技大学测绘科学与技术学院,西安 710054
基金项目:国家自然科学基金资助项目(41977059)
摘    要:为有效解决传统监测技术无法获取城市内部高分辨率PM2.5浓度空间分布情况的问题,基于土地利用回归(land use regression,LUR)模型,以关中平原城市群为例模拟其PM2.5空间分布状况,通过获取研究范围内54个监测站点的PM2.5浓度数据,结合土地利用类型、气象、地形、植被指数、人口密度、交通和污染源等因素,分别建立春、夏、秋、冬及年均5个LUR模型。结果表明:LUR模型调整后各季节及年平均值的R2分别达到0.831 (春)、0.817 (夏)、0.874 (秋)、0.857 (冬)、0.900 (全年平均),5种模型拟合度均较好;采取交叉互验的方法进行了精度检验,显示5种模型的平均精度均达到80.4%,说明LUR模型在模拟关中平原城市群PM2.5浓度空间分布时适用性良好。模拟结果显示,研究区各季节的PM2.5浓度在空间分布上大致相同,呈现出东部高、西部低的明显特征,且空间分布状况受地形因素的影响较大。但在浓度均值的季节变化上则具有夏季低、冬季高的明显差异。本研究结果可为关中平原城市群PM2.5污染防治提供科学依据,亦可为城市内部PM2.5浓度空间分布数据的获取提供新思路。

关 键 词:土地利用回归模型(LUR)   PM2.5   关中平原城市群   监测方法   空间分布
收稿时间:2019-12-27

Monitoring and analysis of PM2.5 concentration spatial distribution based on LUR model
WANG Ruizhe, HU Rongming, LI Pengfei, ZHOU Chen. Monitoring and analysis of PM2.5 concentration spatial distribution based on LUR model[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2843-2852. doi: 10.12030/j.cjee.201912156
Authors:WANG Ruizhe  HU Rongming  LI Pengfei  ZHOU Chen
Affiliation:College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
Abstract:In order to effectively solve the problem that the traditional monitoring technology cannot obtain the high-resolution spatial distribution of PM2.5 concentration in the city, the Guanzhong plain city group was taken as an example to simulate its PM2.5 spatial distribution status based on the land use regression (LUR) model. The 5 LUR models for spring, summer, autumn, winter and an annual average were built through obtaining PM2.5 concentration data of 54 monitoring stations in the study range and combining the factors such as land use type, meteorology, terrain, vegetation index, population density, traffic and pollution sources. The results showed that the adjusted R2 of each season and annual average of the LUR model reached 0.831 (spring), 0.817 (summer), 0.874 (autumn), 0.857 (winter), 0.90 (annual average), respectively, and better fitting levels occurred for the five models. A cross-examination method was used to carry out the accuracy test, and the average accuracy of the five models reached 80.4%, indicating that the LUR model had good applicability when simulating the spatial distribution of PM2.5 concentration in the Guanzhong plain city group. The simulation results showed that the PM2.5 concentration in each season of the study area was roughly same in spatial distribution with the significant characteristics of high in the east, low in the west, and obvious distribution trends along the altitude. However, there was a clear difference of low in summer and high in winter for the seasonal change of the mean concentration. The results of this study can provide a scientific basis for the prevention and control of PM2.5 pollution in the Guanzhong plain city group, and can also provide new ideas for obtaining the spatial distribution data of PM2.5 concentration within the city.
Keywords:land use regression model(LUR)  PM2.5<  sub>  Guanzhong plain city group  monitoring methods  spatial distribution
点击此处可从《环境工程学报》浏览原始摘要信息
点击此处可从《环境工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号