首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present paper analyses the consequences of groundwater exploitation by using field-level data collected from two distinct well irrigated areas of Karnataka. The study results show that the consequences arising out of groundwater overexploitation are severe in high well interference area compared to low well interference area. The burden of well failure is more or less equally shared by all categories of farmers but small farmers are the worst victims of resource scarcity. As a result, overexploitation of groundwater has different impacts on different categories of farmers in terms of access to groundwater, cost and returns to groundwater irrigation and its negative externality cost. The study suggests maintaining inter-well distance to prevent resource mining and calls for supply and demand side interventions. The institutional reform is necessary to restore surface water bodies to facilitate aquifer recharge.  相似文献   

2.
In modern living, rapid development has created an increase in demand for groundwater. An endeavor has been made to understand the hydrogeochemical parameters to determine the utility of groundwater. This situation is severe in coastal hard rock aquifers due to the influence of salinity ingression and other anthropogenic influence. A total of 135 groundwater samples were collected from the coastal aquifer of the Tuticorin district and analyzed for major cations and anions during premonsoon (PRM) and postmonsoon (POM). The ions analyzed were used to determine the drinking, agricultural and domestic utility of groundwater. The electrical conductivity (EC) contour shows that the groundwater quality is poor along the coast. The parameters were compared with WHO (Guidelines for drinking water quality recommendations, WHO, Geneva, 2004) standard for drinking purpose. A groundwater classification method has been developed for groundwater in the area using a dynamic water quality index (WQI). On the basis of the WQI so computed, groundwater in the area has been spatially classified into “excellent,” “good,” “poor” and “very poor” to “Unsuitable” water types variation lithologywise. Corrosivity ratio and hardness were noted to be higher and found to be unsuitable in majority of the regions for domestic purpose. Higher fluoride concentration was noted in the central part of the study area represented by complex geology comprising of the hornblende biotite gneiss and charnockite. Sodium percentage (Na%), sodium absorption ratio, residual sodium carbonate, Wilcox (Classification and use of irrigation waters, US Department of Agriculture, Washington, 1955), permeability index, residual sodium bicarbonate, magnesium hazard, Kelly’s ratio and potential salinity also indicate that most of the groundwater samples are not suitable for irrigation purposes.  相似文献   

3.
农业节水和南水北调对华北平原可持续水管理的影响   总被引:1,自引:0,他引:1  
针对华北平原可持续水管理中存在的问题,采用MIKE SHE模型和SD模型耦合的方式,设定现状保持、农业节水和南水北调等3种情景,模拟2014~2028年农业节水和南水北调对华北平原可持续水管理的影响。结果表明:(1)农业节水的实施对华北平原可持续水管理有一定影响,模拟期末的缺水指数下降15.8%,非充分灌溉和减少灌溉量分别使得地下水储量恢复约0.06和0.12 m;(2)南水北调显著降低缺水指数(下降50.7%),地下水水位和含水层储量出现较大的恢复(含水层储量恢复1.12 m);(3)华北平原短期内无法解决缺水问题,但通过多种途径结合,倡导节约用水,提高用水效率,引入区域外的水,可以有效地缓解华北平原的缺水问题,保证水资源的可持续利用和发展。  相似文献   

4.
India’s continued development depends on the availability of adequate water. This paper applies a data-driven approach to estimate the intra-annual dynamics of water stress across the central Indian Highlands over the period 2002–2012. We investigate the spatial distribution of water demanding sectors including industry, domestic, irrigation, livestock and thermal power generation. We also examine the vulnerability of urban centers within the study area to water stress. We find that 74 % of the area of the central Indian Highlands experienced water stress (defined as demand exceeding supply) for 4 or more months out of the year. The rabi (winter) season irrigation drives the intra-annual water stress across the landscape. The Godavari basin experiences the most surface water stress while the Ganga and Narmada basins experience water stress due to groundwater deficits as a result of rabi irrigation. All urban centers experience water stress at some time during a year. Urban centers in the Godavari basin are considerably water stressed, for example, Achalpur, Nagpur and Chandrapur experience water stress 8 months out of the year. Irrigation dominates water use accounting for 95 % of the total water demand, with substantial increases in irrigated land over the last decade. Managing land use to promote hydrologic functions will become increasingly important as water stress increases.  相似文献   

5.
The present study aimed at assessing the activity of natural radionuclides (3H) and hydrochemical parameters (viz., pH, EC, F, NO3, Cl, Ca2+, Mg2+) in the groundwater used for domestic and irrigation purposes in the Varahi and Markandeya river basins to understand the levels of hydrochemical parameters in terms of the relative age(s) of the groundwater contained within the study area. The recorded environmental 3H content in Varahi and Markandeya river basins varied from 1.95 ± 0.25 T.U. to 11.35 ± 0.44 T.U. and 1.49 ± 0.75 T.U. to 9.17 ± 1.13 T.U. respectively. Majority of the samples in Varahi (93.34%) and Markandeya (93.75%) river basins being pre-modern water with modern recharge, significantly influenced by precipitation and river inflowing/sea water intrusion. The EC-Tritium and Tritium-Fluoride plots confirmed the existence of higher total dissolved solids (SEC > 500 μS/cm) and high fluoride (MAC > 1.5 mg/L) in groundwater of Markandeya river basin, attributed to relatively longer residence time of groundwater interacting with rock formations and vice versa in case of Varahi river basin. The tritium-EC and tritium-chloride plots indicated shallow and deep circulating groundwater types in Markandeya river basin and only shallow circulating groundwater type in Varahi river basin. Increasing Mg relative to Ca with decreasing tritium indicated the influence of incongruent dissolution of a dolomite phase. The samples with high nitrate (MAC > 45 mg/L) are waters that are actually mixtures of fresh water (containing very high nitrate, possibly from agricultural fertilizers) and older ‘unpolluted’ waters (containing low nitrate levels), strongly influenced by surface source.  相似文献   

6.
A survey of radioactivity in groundwater (110 sites) was conducted as a precursor to providing a baseline of radiation exposure in rural and remote communities in Queensland, Australia, that may be impacted upon by exposure pathways associated with the supply, treatment, use and wastewater treatment of the resource. Radionuclides in groundwater, including 238U, 226Ra, 222Rn, 228Ra, 224Ra and 40K were measured and found to contain activity concentration levels of up to 0.71 BqL−1, 0.96 BqL−1, 108 BqL−1, 2.8 BqL−1, 0.11 BqL−1 and 0.19 BqL−1 respectively. Activity concentration results were classified by aquifer lithology, showing correlation between increased radium isotope concentration and basic volcanic host rock. The groundwater survey and mapping results were further assessed using an investigation assessment tool to identify seven remote or rural communities that may require additional radiation dose assessment beyond that attributed to ingestion of potable water.  相似文献   

7.
The distributions of 238U and 234U in groundwater from the “Jeffara aquifer” were studied by using alpha spectrometric methods. The concentration ranges of 238U and 234U/238U activity ratios were 1.34 ± 0.17 to 3.43 ± 0.38 ppb, and 1.43 ± 0.23 to 1.82 ± 0.27 respectively. Variations in concentrations can be related not only to lithostratigraphic formations but also to different origins of groundwater. U content of Jeffara are found very similar to those of Continental Intercalaire aquifer in both El Hamma and Chenchou regions, indicating that the Continental Intercalaire is the dominant source of the groundwater.  相似文献   

8.
Reuse of mining wastewater in agricultural activities in Jordan   总被引:1,自引:0,他引:1  
A pilot study was completed in the Al-Abyad area near phosphate mining activity in Jordan. Six plots of 50 m2 each were planted with two types of plant species (Zea mays spp. and Medicago lupulina spp.) and irrigated using three types of water (fresh groundwater, mine wastewater, and hydride water consisting of 50% fresh and 50% mine wastewater) to investigate the suitability of utilizing mine wastewater for food production in the area. Water, soil and plant sampling was completed for each plot over different time intervals and analyzed for heavy metal (Cr+6, Ni+2, Zn+2 and Pb+2) in addition to major ionic composition of the water used for irrigation. Crop yield was estimated at the end of the experiment. Plots irrigated with mine wastewater showed slightly higher heavy metals concentrations and soil salinity during the experiment period was higher for plots irrigated with mine wastewater compared to plots irrigated with fresh water, and it was uniform through the upper 45 cm of the soil profile due to the high amount of irrigation water used during the experiment. Crop yield was inversely proportional to salinity as an increase of salinity by 2-folds resulted in reducing yield by almost 50%. However, no risk of heavy metals contamination was found in plants and soil. Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue.  相似文献   

9.
Olive (Olea europaea L.) is a drought-tolerant tree which is usually grown in areas with a Mediterranean climate that receive >350 mm of annual rainfall. However, olive growing in Syria has recently expanded into drier areas (200–300 mm annual rainfall) where irrigation resources are limited. This study, carried out between November 2002 and October 2005, aimed to investigate the response of a little known Syrian drought-tolerant olive variety (Qaisi) to water harvesting and limited summer irrigation (200 l per tree) in an arid area (average annual rainfall of 210 mm) with Mediterranean climate in Syria. Soil moisture and growth of four-year-old trees were monitored regularly. Olive leaves were sampled at different stages to determine water content, specific mass, and N content. Stomatal conductance was also measured in 2005. Our results showed that water harvesting and summer irrigation improved soil moisture content, leaf water content (up to 36% higher in Sep. 2003), leaf N content (up to 45% higher in Aug. 2003), leaf stomatal conductance (up to 55% higher in Apr. 2005), and relative trunk growth rate. Water harvesting was most successful in wet years, although the water storage capacity was not enough to retain all harvested water. This study indicated that it is possible to grow drought-tolerant olive varieties in arid areas under little or no irrigation, but proper water and nutrient management should be considered for sustainable growth.  相似文献   

10.
Additional freshwater sources are required in many parts of the world, including the coastal areas of the Red River Delta (RRD), where the groundwater (GW) is generally brackish. Determining a feasible method for desalinating brackish aquifers would help provide additional freshwater sources. However, substantial desalination of brackish aquifers cannot be achieved under the natural conditions of GW flow and precipitation recharge. Although rainfall recharge to the shallow Holocene aquifer has occurred for hundreds of years, the aquifer still remains brackish since the natural hydraulic conditions do not allow a complete mixing between the fresh recharged water and aquifer salinized water or the discharging of the aquifer salinized water. The planned salt intrusion prevention gates in the Red River, Tra Ly River and Hoa River in the RRD coastal area, combined with increased GW abstraction and associated aquifer recharge with fresh river water, could result in the gradual desalination of the shallow Holocene aquifer. These effects would help improve the area’s resilience to freshwater shortages and sea level rises and would allow for the creation of a long-term sustainable water resource development plan to manage the salinization of water resources caused by sea level rises. Finite element (FE) modeling of GW flow, solute transport via GW flow and dynamic programming (DP) have been used to study the potential desalination of brackish aquifers, the magnitude of GW abstraction quantities and the spatial and temporal aspects of desalination. FE modeling of GW flow coupled with DP was utilized to identify the magnitude of sustainable abstraction quantities and the GW flow field, which is required in salt transport models. Multiple sizes of elements and time steps were used to adapt to the unsteady state of GW flow and hydraulic head variables between the elements in the FE meshes in order to ensure reasonable accuracy of numerical modeling. The GW flow and salt transport modeling and DP allowed determining quasi-steady-state GW abstraction rates and aquifer salinity levels for conditions that did and did not include the shallow Holocene unconfined aquifer recharge from rainfall. The aquifer modeled domain which is supposed to serve the pumping well field is 1.5 km2. The results showed that the Holocene aquifer may provide a stable abstraction rate of 100 m3/day starting in the 6th year (for the worst-case scenario with zero aquifer recharge from rainfall) to 130 m3/day starting in the 3rd year (for the scenario with aquifer recharge equal to 3% of the rainfall levels). During the first years of GW abstraction, the desalination of the brackish upper Holocene aquifer will mainly occur in the area close to the river, and at the 18th year of abstraction, almost the entire area between the river and line of pumping wells would be desalinized. From the 10th year of abstraction, the abstracted water has a total dissolved solids content lower than 0.5 g/l for the worst-case scenario with zero aquifer recharge from rainfall and lower than 0.42 g/l for the scenario with aquifer recharge equal to 3% of the rainfall. The modeling results indicate the simulated process by which abstraction of groundwater adjacent to the Tra Ly River could desalinize the brackish aquifer via freshwater recharge from the river.  相似文献   

11.

Irrigation system performance regards as a function of climatic conditions. The present study was carried out to study this phenomenon. Sugar beet and sesame corps were cultivated during two agricultural seasons of 2017/2018 and 2018/2019 irrigated with drip and sprinkler systems. The drip and sprinkler systems performance was evaluated in terms of hydraulic characteristics added to irrigation water requirements. The recorded monthly values were compared to the traditional estimation method. The results revealed that irrigation system efficiency was increased by increasing ambient temperature for the drip irrigation system, and vice versa was noticed with the sprinkler irrigation system. Emission uniformity and application efficiency of emitters were increased by increasing ambient temperature. While the sprinkler flow rate and distribution uniformity were decreased by increasing ambient temperature. For drip irrigation system, the average total amount of irrigation water requirements using traditional estimation for sugar beet (2372 m3/fed) was less than the actual calculated (2439 m3/fed), while for sesame crop, the traditional estimation method (2556 m3/fed) was higher than actual calculated (2477 m3/fed). Using a sprinkler system, the average total amount of irrigation water requirements by the traditional estimation (2689 and 2897 m3/fed) was less than the actual calculated (2709 and 3044 m3/fed) for sugar beet and sesame crops, respectively. So, it is important to consider the effects of climatic conditions through the agricultural season.

  相似文献   

12.
On-going population growth and resulting domestic demand for water require rapid and effective decision-making as regards groundwater management and control of the various sources of salinization and pollution in Coastal aquifers. Sustainability of water resources for utilization by future generations must therefore be a high priority, not only for the purpose of fulfilling needs for water usage but also for bringing people into harmony with their ambient natural environment.The objective of this paper is to propose an empirical approach for prioritization of the needs involved for sustainable aquifer management. The approach involves a schematic format to:(1) develop a global understanding of an aquifer's hydrological and environmental properties in order to delineate appropriate eco-hydrological scenarios and recommend corresponding operational management activities; and(2) emphasize the importance of educating and increasing the awareness of the population involved as to the need for and viability of socially acceptable measures for sustainable management of groundwater and other resources.The psychologist Abraham Maslow utilized a pyramid to illustrate that until people's most basic needs were fulfilled, higher levels of needs would remain irrelevant. This paper postulates a comparable pyramid prioritizing hydrological needs required for progressing towards sustainable groundwater resources. Two sub-regions of Israel's Coastal aquifer in the Sharon region have been presented as representative areas, each characterized by different stress of exploitation. In assessing these sub-regions situation, specific measures have been recommended for achieving and/or maintaining sustainable groundwater resources in light of the ambient environment, and the level of the population on the pyramidal hierarchy of groundwater needs.  相似文献   

13.
目前,我国有关农村居民生活用水的系统研究相当缺乏。对地处上海市浦东快速城市化区域的8个村庄进行随机入户调查。在对调查数据进行整理和统计分析的基础上,系统研究当地农民的生活用水行为和影响因素。研究表明:(1)被访农民普遍认为自来水价格过高。家庭收入水平是决定被访农民对水价态度的主要影响因素。(2)自来水价格主要对农户的洗衣行为产生显著影响。认为自来水价格高的农户更倾向于用井水洗衣。(3)影响农户自来水用水量的显著变量包括:农户家庭常住人口、自来水价格、洗衣水源和洗澡方式。(4)被访农民普遍具有节水意识,但大都局限于“节约使用自来水,减少自来水水费”这个层面。提高农民的水污染控制和水资源保护意识,正确引导其井水抽取和生活污水排放行为,促进农村污水收集和治理项目的普及和正常运行,以及完善地下水资源的保护和管理机制是现阶段当地保障农村生活用水安全的工作重点  相似文献   

14.
The pyramid of human needs developed by Abraham Maslow is based upon the presumption that until a person's lower level needs are fulfilled, higher level needs remain irrelevant. Groundwater and land-use management can likewise utilize such a hierarchy in integrating plans and operations with the needs of the society. Only once a region's population has fulfilled more basic concerns can higher-level groundwater and land-use management needs be effectively achieved. Attaining the ultimate goal of resource sustainability would certainly require considerable public backing, both for financial support and minimizing ambient pollution. For efficient water management to supply a society's water needs for future generations, sustainable groundwater management will require the full support of an educated society. The objective of the authors is to point out how essential it is to integrate operational strategies into regional hierarchies of needs applicable to groundwater management, land-use, and social planning. The situation of groundwater resources in Israel's Sharon Coastal aquifer region is taken as a case in point. Remedial groundwater activities have been undertaken in the management program for this aquifer. But it appears that maximal management efficiency cannot be achieved until the public's basic concerns are satisfactorily addressed and water resources planners reach consensus and a working partnership with the society in question. Operational measures must be clearly shown to benefit the region's population as regards their social, economic, and environmental concerns. This can only be achieved through public education, promoting awareness of the issuesbreak involved.  相似文献   

15.
The Pleistocene aquifer represents the main aquifer underlying the Nile Delta area. This aquifer is directly affected by the surface water from the Nile branches. However, the study of the hydrogeochemistry of this aquifer indicates the possibility of classifying it into three hydrochemical zones from south to north. The groundwater chemistry of each zone is the resultant effect of the local factors controlling the development of groundwater quality.  相似文献   

16.
The groundwater occurs in hard rock aquifers, which is more predominant in India. It is more common in the southern peninsula especially Tamil Nadu. Madurai district is located in the central part of Tamil Nadu, underlain predominantly by crystalline formations and alluvium along the river course. The study area being a hard rock terrain, the groundwater is stored in cracks, fissures, joints, etc., and hence the quantity is lesser. The frequent failure of monsoon also aggravates the scarcity of this commodity. In this scenario, the quality and hydrogeochemistry of the available quantum of water plays a significant role for the determination of its utility and in tracing out the hydrogeochemical evaluation. Fifty-four groundwater samples were collected representing the entire study area. The samples collected were representative covering all the major litho units of the study area (charnockite -21, fissile hornblende biotite gneiss-21, granite-4, quartzite-3, and 5 samples from flood plain alluvium). The samples collected were analyzed for major ions and were classified for different purposes like drinking, domestic, and agriculture, with respect to lithology. The comparison of the groundwater samples with the drinking water standards shows that few samples fall above the drinking water limit irrespective of lithology. The samples were classified with sodium absorption ratio, electrical conductivity, residual sodium carbonate, sodium percentage (Na %), Kellys ratio, and magnesium hazard, and permeability index for irrigation purpose found that most of the samples were suitable for irrigation purpose irrespective of lithology. Total hardness and corrosivity index were studied for the domestic purpose and found that the samples of the granitic terrain are safe. Apart from this, index of base exchange, Schoellers water type, Stuyfzands classification were attempted along with Gibbs plot to determine the major geochemical activity of the region. The study reveals that the samples collected from granitic and quartzitic terrains are comparatively better for the domestic and drinking purpose due to the presence of resistant minerals to weathering.  相似文献   

17.
In the south-east of New South Wales, Australia, forested catchments are largely relied upon to provide high-quality surface water at low cost to small regional communities. The forests in question are used for multiple purposes including timber production, which can result in conflicts and debate regarding the sustainability of timber and water resources being co-developed. A case study is examined where a logging operation will occur on 3.5% of the Myrtle Creek catchment that is used to supply water to the small township of Wyndham. Modelling based on the water yield response of eucalypt forests to disturbance predicts that during the first four years post-harvest, total streamflows will be increased under the ‘2010 logging’ scenario, with a maximum increase of 2.6% within the first two years. Streamflows will then likely decrease compared to the ‘no logging’ scenario and will continue to do so until regrowth reaches 28 years of age with a maximum 1.4% decrease predicted. Streamflows under both scenarios will continue to increase over time as water yield has been suppressed by forest regeneration following extensive wildfires and logging that occurred from the 1960s to 1980s. It is concluded that timber harvesting, if limited spatially and temporally, can occur without compromising catchment values and may contribute to improved forest heterogeneity and resilience. However, in the face of a changing climate and an increased likelihood of catastrophic high intensity wildfires, the future sustainability of undercapitalised small town water supplies reliant on a single water source is questionable.  相似文献   

18.
The occurrence of arsenic in drinking water and its detrimental effects have drawn much attention in recent years. Several studies have been conducted in the deltaic plains of River Ganga, NE part of the India, and in other countries, but no systematic study was conducted in South India on occurrence of arsenic in groundwater. The main aim of this study is to determine the level of arsenic in groundwater and to understand the relation with other geochemical parameters of groundwater in the south-eastern coastal aquifer at Kalpakkam region, India. This region is represented by three different lithologies, viz. charnockites, flood plain alluvium and marine alluvium. Twenty-nine representative samples of groundwater were collected and analysed for major ions, metals and isotopes such as 2H and 18O. In addition, geophysical method was also attempted to understand the subsurface condition. The spatial variation in arsenic (As) indicates that higher concentration was observed around the landfill sites and irrigated regions, which was supported by geochemical, statistical and isotopic inferences. The variation in the As with depth, lithology and sources has been clearly brought out. Though the values of As does not exceed the drinking water permissible limit (10 mg/l), it has reached a near permissible level of 8.7 ppb. Hence, it is essential to understand the geochemical behaviour of As for a proper future management of the water resource in the study area.  相似文献   

19.
This paper recommends a revision of watershed development policy in India in relation to the planning of development interventions involving agricultural intensification and rainwater harvesting following biophysical and societal impact studies carried out on two watershed development projects in Karnataka. A need for changes in policy has arisen in response to progressive catchments closure at the basin level and declining volumes of water flowing into village level reservoirs (known locally as tanks). Flow reductions have occurred largely as a result of increased agricultural intensification over the past 10–15 years. Field levelling, field bund construction, soil water conservation measures, farm ponds, the increase in areas under horticulture and forestry and the increased abstraction and use of groundwater for irrigation are all contributing factors to reduced flows. Planning methodologies and approaches, which may have been appropriate 20 years ago for planning water harvesting within watershed development projects, are no longer appropriate today. New planning approaches are required which (1) take account of these changed flow conditions and (2) are also able to take account of externalities, which occur when actions of some affect the livelihoods of others who have no control or influence over such activities and which (3) contribute to the maintenance of agreed minimum downstream flows for environmental and other purposes.
Ian CalderEmail:
  相似文献   

20.
This study employed the Geographical Information System (GIS) technology to investigate nitrate contamination of groundwater by agrochemical fertilizers in the Kakamigahara Heights, Gifu Prefecture, central Japan. Thematic information and chemical data of groundwater from the Heights were analyzed in a GIS environment to study the extent and variation of nitrate contamination and to establish spatial relationships with responsible land use types. The high and correlated concentrations of Ca(2+), Mg(2+), SO(4)(2-), and NO(3)(-) reflected the polluted nature of the unconfined highly permeable Kakamigahara aquifer. Ninety percent of the water samples showed nitrate concentrations above the human affected value (3 mg/l NO(3)(-)), while more than 30% have exceeded the maximum acceptable level (44 mg/l NO(3)(-)) according to Japan regulations. The spatial analyses indicated that groundwater contamination by nitrate is closely associated with one specific land use class, the "vegetable fields". The nitrate concentration of groundwater under vegetable fields was significantly higher than that under urban land or paddy fields. Most of the unacceptable nitrate levels were encountered in boreholes assigned to "vegetable fields" but a few were also found in boreholes allotted to "urban" class. Therefore, the vegetable fields were considered the principal source of nitrate contamination of groundwater in the Kakamigahara. However, contamination from urban sources is also possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号