首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The data on the frequency of mating by queens of eusocial Hymenoptera are reviewed.It is pointed out that the issue of sperm clumping is probably irrelevant to the evolution of eusociality.The hypothesis is presented that multiple mating is an adaptation for maintaining large colonies. In ants there is a significant relation between the size of the colony and the frequency of mating.The effect of multiple mating on the spread of a gene for worker behavior is explored. If a female mates twice, the effective number of matings is less than two except in the case of identical sperm contribution by the males.Sperm bias is defined as the contribution of unequal amounts of sperm by the males that mate with a queen. Sperm bias can be produced as a sampling phenomenon, by inter-male competition for females and by sperm competition.The relation between the ergonomic efficiency of the workers at the production of reproductives and the number of matings that is consistent with the evolution of eusociality is derived. If workers are only about 10% more efficient at producing reproductives within a eusocial colony than they are solitarily, then two matings by the queen will still produce a selective advantage to eusocial behavior.  相似文献   

2.
Male competition in Cardiocondyla ants   总被引:3,自引:0,他引:3  
The two types of males in the ant genus Cardiocondyla differ remarkably in morphology and behavior. Ergatoid males are wingless fighters whose spermatogenesis continues throughout their entire adult lives and which therefore have an “unlimited” sperm supply. They attempt to kill all eclosing ergatoid rivals and thus to increase their share in copulations with the virgin queens reared in their nests. Winged males, on the other hand, are docile and emigrate from the nests a few days after eclosion, probably to mate with queens from other colonies. By this time, their testes have fully degenerated and all sperm is stored in the seminal vesicles. Before emigration, winged males may mate with virgin queens in their maternal nests, but they are nevertheless rarely attacked by ergatoid males. In the laboratory, the life expectancy of ergatoid males is only slightly higher than that of winged males, but because of the emigration of the latter the difference is likely to be more pronounced in the field. Both male morphs are capable of inseminating more than 35 virgin queens. However, winged males older than 14 days mate less often than ergatoid males of similar age, probably due to sperm depletion in later life. The spermathecae of queens inseminated by ergatoid males contained significantly more sperm than those of queens which mated with winged males. We discuss the evolution of intranidal mating and male polymorphism in ants. Received: 8 August 1997 / Accepted after revision: 6 October 1997  相似文献   

3.
Queen mating frequency of the facultatively polygynous ant Acromyrmex echinatior was investigated by analysing genetic variation at an (AG)n repeat microsatellite locus in workers and sexuals of 20 colonies from a single Panamanian population. Thirteen colonies were found to be monogynous, 5 colonies contained multiple queens, whereas the queen number of 2 colonies remained unresolved. Microsatellite genotypes indicated that 12 out of 13 queens were inseminated by multiple males (polyandry). The mean queen mating frequency was 2.53 and the mean genetically effective paternity frequency was 2.23. These values range among the highest found in ants, and the results are in keeping with the high mating frequencies reported for other species of leafcutter ants. Consistent skew in the proportional representation of different patrilines within colonies was found, and this remained constant in two consecutive samples of offspring. Dissections showed that all examined queens from multiple-queen colonies were mated egg-layers. The mean relatedness value among nestmate workers in polygynous colonies was lower than that for monogynous colonies. No diploid males were detected in a sample of 70 genotyped males. Worker production of males was detected in one queenless colony. We discuss our findings in relation to known patterns of multiple maternity and paternity in other eusocial Hymenoptera. Received: 2 September 1998 / Received in revised form: 3 February 1999 / Accepted: 7 February 1999  相似文献   

4.
Umphrey GJ 《Ecology》2006,87(9):2148-2159
Interspecific mating in eusocial Hymenoptera can be favored under certain conditions even if all hybrid offspring are completely infertile. This exploits two key features of the eusocial Hymenoptera: a haplodiploid genetic system and reproductive division of labor in females. Interspecifically mated queens can still produce viable sons that will mate intraspecifically. Apparent reduced fitness resulting from producing infertile daughter gynes can be also offset by advantages conferred by hybrid workers. An important advantage is likely to be superior ability at using marginal habitats. Interspecifically mated queens can nest in sites where intraspecific competition will be low. By mating interspecifically, a queen trades expected reproductive success through female offspring for a higher probability of achieving some reproductive success. Females that mate interspecifically can be considered "sperm parasites" on the males of the other species. I provide evidence that sperm parasitism is responsible for widespread hybridization in North America among two species of the ant subgenus Acanthomyops (genus Lasius), and review evidence for sperm parasitism in other hybridization phenomena in ants. Sperm parasitism in ants represents a novel form of social parasitism in ants and a dispersal polymorphism. It may also act as a precursor to the evolution of some other recently discovered phenomena, such as genetic caste determination.  相似文献   

5.
Seminal fluid enhances sperm viability in the leafcutter ant Atta colombica   总被引:1,自引:1,他引:0  
The seminal fluid that accompanies sperm in ejaculates has been shown or suggested to affect sperm competition and paternity success of insects by preventing female remating, inducing oviposition, and forming mating plugs. In Atta leafcutter ants, queens have multiple mates but never remate later in life, although they may live and produce fertilized eggs for several decades. The mating biology and life history of these ants therefore suggests that the major function of seminal fluid is to maximize sperm viability during copulation, sperm transfer, and initial sperm storage. We tested this hypothesis by comparing the viability of testis sperm and ejaculated sperm (mixed with seminal fluid) and found a significant positive effect of seminal fluid on sperm viability. We further quantified this positive effect by adding accessory gland secretion (a major component of seminal fluid) in a dilution series, to show that minute quantities of accessory gland secretion achieve significant increases in sperm viability. Sperm stored by queens for 1 year benefited in a similar way from being exposed to accessory gland compounds after dissection in control saline solution. Our results provide the first empirical evidence that seminal fluid is important for the production of viable ejaculates and that the accessory glands of Atta males—despite their small size—are functional and produce a very potent secretion.  相似文献   

6.
Summary In ants, because males have a finite sperm supply and females mate only at the beginning of their reproductive lives, it is possible to infer which is the limiting sex from a few parameters: the amount of sperm produced by males, the amount of sperm stored by females, and the numerical sex ratio. In the Argentine ant Iridomyrmex humilis mating takes place in the nest. Laboratory experiments and field data showed that the numerical sex ratio is heavily male-biased (10.1:1) and that the maximum number of sperm a female can store is similar to the number of sperm a male possesses. Thus females are the limiting sex in this species. In a set of mating experiments, one queen was presented with 1–20 males. The highest proportion of successful matings occurred when females were presented with two males. There was a significant negative correlation between the amount of sperm queens stored and the number of males present in the mating arena. This relationship most likely resulted from male interference during the copulation process. When several males were present in the arena, the mating pair was frequently disturbed by other males trying to copulate. Newly mated queens collected from the field stored 172,000 ± 76,000 sperm, a quantity most similar to that measured in laboratory mating experiments with a ratio of 5 or 10 males per queen. Because the operational sex ratio in I. humilis is highly male-biased, male interference may also decrease the amount of sperm queens store in the field. In many ants, fewer sperm stored by queens should decrease their reproductive success because they would run out of sperm earlier in their reproductive lifetimes. However, comparison of the amount of sperm present in young and old I. humilis queens collected in the field suggests that most use only a small proportion of their sperm supply during their lifetimes. Males mate once and discharge all their sperm during a single mating. Females may mate with several males but dissection of these males indicated that in most cases only one of them had empty seminal vesicles thus suggesting that a single male is responsible for most of the sperm transfer. Thus caution should be exercised in inferring multiple inseminations, as is frequently done in eusocial insects, from the observation of multiple copulations. Correspondence to: L. Keller  相似文献   

7.
A model has been developed which predicts the numbers of immature and adult workers, males and queens, in a Paravespula vulgaris colony throughout a season. This model colony is based on the rate of egg lay of the queen which is approximated by a skewed normal frequency curve. Larval and pupal numbers are predicted by applying mean developmental times to the eggs produced. For workers, adult numbers are produced by modifying pupal numbers by adult longevity, while adult males and queens are obtained directly from their respective pupal numbers. Data generated by the model compare favourably with published observations.Changes in the larva : worker ratio through the season affecting adult longevity and immature stage developmental times are discussed. The total number of adults produced per worker (Ro) varies throughout the season following a skewed normal frequency distribution. Adult queens and males accounted for only 15% of the total seasonal egg production.This model could easily be adapted to deal with population changes in colonies of other eusocial wasps.  相似文献   

8.
The occurrence and genetic effects of polyandry were studied in the ant Proformica longiseta using three microsatellite markers. The average queen mating frequency (QMF) estimated from the sperm dissected from the spermathecae of 61 queens was 2.4 with 69% of the queens being multiply mated. QMF estimated from worker offspring in a subsample of eight monogynous colonies was 3.5, but the effective paternity (me,p) was only 1.23. The difference between these values reflected unequal sperm use by the queens. Most colonies of P. longiseta were polygynous and the average relatedness among workers was 0.35. Polyandry thus added only marginally to the genetic diversity of colonies, and our results gave little support to the genetic-variability hypothesis for explaining polyandry. Diploid male load was low, as only 1% of males were diploid. A large majority (92%) of nests produced one sex only, with males produced in colonies that had higher than average worker relatedness. This contradicted the predictions derived from worker control of sex ratios. Males produced enough sperm to fill the spermathecae of several queens. Thus, the results indicated that diploid male load, sperm limitation and sex ratio conflict are also unlikely explanations of polyandry. Plausible hypotheses for polyandry include mating by convenience, as the sex ratio is male biased and the mating costs to a female can be low because the females are wingless and have no mating flight. The observed unequal sperm use furthermore points to sperm choice and sperm competition as important factors in the evolution of polyandry.  相似文献   

9.
Patterns of male parentage in the fungus-growing ants   总被引:2,自引:0,他引:2  
Ant queens from eight species, covering three genera of lower and two genera of higher attine ants, have exclusively or predominantly single mating. The ensuing full-sib colonies thus have a strong potential reproductive conflict between the queen and the workers over male production. This is because, all other things being equal, relatedness incentives should favour traits expressed in both workers and the queen to monopolise the production of the colony's male offspring. Microsatellite genotyping of males from these attine species shows that workers in queenless colonies are able to produce males, but that no worker-produced males were found in queenright colonies. Our results suggest that worker reproduction is rare or even absent in colonies with a fertile queen. This indicates that either the queen directly prevents the workers from raising their own sons, or that worker reproduction is absent in the presence of a fertile queen due to high ergonomic costs of this behaviour.  相似文献   

10.
Under the hymenopteran single-locus complementary sex-determination system, production of diploid males results from homozygosity at the sex-determiner locus. This arises when both parents transmit identical alleles at the locus to the offspring. In species reproducing asexually through thelytokous parthenogenesis, production of diploid males may also occur when the sex locus undergoes recombination and becomes homozygous in the offspring. Diploid males represent a substantial genetic load in hymenopteran populations because they often produce unviable sperm or sire sterile triploid female offspring. In the Mediterranean ant Cataglyphis cursor, the queen and workers can produce female offspring through automictic thelytokous parthenogenesis with central fusion, a mode of parthenogenesis that increases homozygosity. We report, for the first time, the presence of about 39 % of colonies producing adult diploid males (seven colonies out of 18). Overall, 8 % of adult males were diploid (12 diploid males out of the 146 males genotyped). Genotyping workers from the seven colonies producing diploid males showed that three diploid males were sons of queens and produced by thelytoky, six were probably sons of workers also produced by thelytoky and three were non-natal. Furthermore, the mating of a diploid male with two virgin queens in the laboratory led to the production of sterile triploid workers, which shows that diploid males in C. cursor are fertile, mate successfully and produce viable and functional but probably sterile female offspring. Because diploid males originate from thelytokous reproduction, they are only produced during sexual production and hence do not impair colony growth, which could explain why they are not removed at early brood stages.  相似文献   

11.
The evolution of polyandry is a central problem in the study of insect mating systems, and both material and genetic benefits have been proposed to offset the presumed costs of multiple mating. Although most eusocial Hymenoptera queens mate with just one or occasionally two males, high levels of polyandry are exhibited by several taxa, including seed-harvester ants of the genus Pogonomyrmex. Previous studies of queen mating frequency in Pogonomyrmex have focused on monogynous (one queen per colony) species in the subgenus Pogonomyrmex. We performed a genetic mother–offspring analysis of mating frequency in Pogonomyrmex (Ephebomyrmex) pima, a queen-dimorphic species with dealate and intermorph queens that differ in colony structure (intermorph colonies contain multiple queens). Our results demonstrate that both dealate and intermorph queens of P. (E.) pima are typically single maters, unlike their congeners analyzed thus far. Polyandry appears to be a derived trait in Pogonomyrmex, but comparative tests between P. (E.) pima queen morphs and across the genus provide no evidence that it evolved as an adaptation to increase genetic diversity within colonies or to obtain more sperm, respectively.  相似文献   

12.
In several species of ants, queens often form temporary cooperative associations during colony foundation. These associations end soon after the eclosion of the first workers with the death or expulsion of all but one of the queens. This study examined competition between foundress queens of the fire ant Solenopsis invicta. Although attacks by the workers contributed to queen mortality, queens gained no advantage by producing more workers than their co-foundresses. Restriction fragment length polymorphism analysis of mitochondrial DNA showed that the queen producing more workers during colony founding was no more likely to survive than the less productive queen. In experimentally manipulated colonies in which all the workers were daughters of only one of the queens, the mother of the workers was no more likely to survive than the unrelated queen. Queens producing diploid males reared fewer offspring but were as likely to survive as queens producing only workers. These results suggest that workers do not discriminate between related and unrelated queens within colonies. Aggressive encounters between queens were common. Queens were more likely to die or be expelled if paired with heavier queens or if they lost more weight than their co-foundress during the claustral period. Finally, when queens were separated by screens through which workers could pass, the workers usually attacked and killed the queen farther from the brood. These results suggest that queen survival is promoted by a high fighting ability relative to co-foundresses, rather than by increased worker production, and that workers respond to queen differences that are independent of kinship. Received: 8 September 1995/Accepted after revision: 5 March 1996  相似文献   

13.
Summary In a population of the monogynous slave-making ant Harpagoxenus sublaevis in S.E. Sweden, the mean proportion of dry weight investment in queens was 0.54. This result differed significantly from 0.75 but not from 0.5, matching the prediction from the genetic relatedness hypothesis of sex ratio applied to slave-makers, given (as confirmed by this study) single mating of queens, population-wide mate competition, and relatively low levels of worker male production. Sex investment appeared unaffected by resource availability. In the same 47 colony population sample, fertile slave-maker workers were found in every queenless colony (ca. 30% of all colonies), and in 58% of queen-right colonies. Fertile workers occurred at a significantly higher frequency in the queenless colonies (19.2%) than in the queenright ones (9.8%), confirming that queenless conditions promote worker fertility. Fertile and sterile workers were similar in size. Electrophoretic allozyme analysis of ants from 49 colonies showed that: 1) queens mated singly; 2) female nestmates were full sisters (their regression coefficient of relatedness (±SE) was 0.735±0.044); 3) inbreeding did not occur; 4) queen and worker siblings were not genetically differentiated. Worker male production in queenright colonies was neither confirmed nor ruled out by the genetic data. However, production data indicated that queenless workers produced between 4.4 and 21.6% of all males. Overall colony productivity was largely determined by slave number, itself positively correlated with the number of slave-maker workers. There was an abrupt switch from all worker to all sexual production as colony size rose, as predicted by life history models. In queenright colonies, fertile slave-makers did not discernibly reduce colony productivity. Such workers occurred in queenright colonies with most slaves, suggesting they exploited energetic surpluses. Worker reproduction in H. sublaevis therefore appears to have greater influence at the level of individual behaviour than at colony or population level.  相似文献   

14.
The fate of queen foundress associations in ants varies across taxa: in some, lethal fighting results in survival of a single queen, while in others, queens coexist long term. One hypothesis for this difference is that selection favors fighting when group sizes are small and tolerance when groups are large. In an experiment with the ant Messor pergandei, we formed small, medium, and large groups with newly mated queens from field populations that have different mean group sizes and differ in whether multiple queens occur in older established colonies. We found that whether queens are eliminated by fighting depends upon region of origin and not group size: regardless of co-foundress number, queens from sites with single-queen adult field colonies displayed agonistic behaviors and their colonies reduced to a single queen, while queens from sites with multiple-queen colonies did not fight and co-foundresses coexisted long term. Worker aggression towards and elimination of queens were also correlated with region of origin. Where fighting occurred, queens were as likely to be killed by workers as by other queens. An aggressive display was the most common form of agonistic interaction among queens, while fighting was relatively rare. We hypothesize that queen displays evolved in response to worker attacks because they increase the probability that workers will eliminate competitor queens. Our results suggest that the evolutionary interests of workers, as well as queens, could be important in determining the evolution and maintenance of queen elimination in foundress associations.  相似文献   

15.
Summary Two forms of the fire ant, Solenopsis invicta, occur in North America; the monogyne form has colonies with a single functional queen while the polygyne form has colonies containing many functional queens. Field surveys indicate that diploid males are common in natural populations of the polygyne form but absent from monogyne populations, in contrast to laboratory data showing that similar frequencies of queens producing such males occur in the two types of populations. Our results show that mature monogyne colonies with adopted queens rear diploid males in the laboratory, so it is unlikely that the absence of these males from monogyne colonies in the field is due to discrimination against them by monogyne workers. On the other hand, incipient monogyne colonies that produce diploid males exhibit significantly higher mortality and significantly slower rates of growth (Figs. 1–3) than colonies producing workers only. These results suggest that the observed distribution of male diploidy in S. invicta can be explained by differential mortality of diploid male producing colonies of the two forms, with such colonies of the monogyne form experiencing 100% mortality early in development. The mortality differences due to this factor are shown to be related to the different social structures and modes of colony founding characterizing the two forms.  相似文献   

16.
Wild bumblebee colonies are hard to find and often inaccessible, so there have been few studies of the genetic structure of bumblebees within natural colonies, and hence, it is not clear how frequently events such as worker reproduction, worker drift and queen usurpation take place. This study aimed to quantify the occurrence of natal-worker reproduction, worker drift and drifter reproduction within 14 wild colonies of Bombus terrestris in Central Scotland. Four unlinked microsatellites were used to identify patterns of relatedness of the colonies’ adults and broods. In colonies with queens (queenright colonies), worker reproduction accounted for just 0.83 % of males, increasing to 12.11 % in queenless colonies. Four colonies contained a total of six workers which were not daughters of the queen, and were assumed to be drifters, and four male offspring of drifters. Drifting is clearly not common and results in few drifter offspring overall, although drifters produced approximately seven times more offspring per capita than workers that remained in their natal colony. Unexpectedly, two colonies contained clusters of sister workers and juvenile offspring that were not sisters to the rest of the adults or brood found in the colonies, demonstrating probable egg dumping by queens. A third colony contained a queen which was not a sister or daughter to the other bees in the colony. Although usurping of bumblebee colonies by queens in early season is well documented, this appears to be the first record of egg dumping, and it remains unclear whether it is being carried out by old queens or newly mated young queens.  相似文献   

17.
Social groups are at particular risk for parasite infection, which is heightened in eusocial insects by the low genetic diversity of individuals within a colony. To combat this, adult ants have evolved a suite of defenses to protect each other, including the production of antimicrobial secretions. However, it is the brood in a colony that are most vulnerable to parasites because their individual defenses are limited, and the nest material in which ants live is also likely to be prone to colonization by potential parasites. Here, we investigate in two ant species whether adult workers use their antimicrobial secretions not only to protect each other but also to sanitize the vulnerable brood and nest material. We find that, in both leaf-cutting ants and weaver ants, the survival of the brood was reduced and the sporulation of parasitic fungi from them increased, when the workers nursing them lacked functional antimicrobial-producing glands. This was the case for both larvae that were experimentally treated with a fungal parasite (Metarhizium) and control larvae which developed infections of an opportunistic fungal parasite (Aspergillus). Similarly, fungi were more likely to grow on the nest material of both ant species if the glands of attending workers were blocked. The results show that the defense of brood and sanitization of nest material are important functions of the antimicrobial secretions of adult ants and that ubiquitous, opportunistic fungi may be a more important driver of the evolution of these defenses than rarer, specialist parasites.  相似文献   

18.
Summary ecological aspects of monogyny and polygyny in social insect colonies are important in comparing individual queen reproductive success. Inseminated, fecund, multiple foundresses are common in some groups of ants and eusocial wasps, but true polygyny in termites has not previously been studied. One third of Nasutitermes corniger (Isoptera: Termitidae) colonies sampled in areas of young second growth in Panama contained from 2–33 primary queens (not supplementary or neotenic reproductives). All queens in polygynous associations were fully pigmented, physogastric egg layers within a single royal cell. Multiple kings were found less frequently; true polyandry is apparently restricted to immature polygynous colonies.Data on queen weight and morphological features, and on colony composition, show that queens in polygynous nests are young and that a transition from polygyny to monogyny probably occurs after several years. The escalated growth rate of multiple queen colonies removes them from the vulnerable incipient colony size class more rapidly than colonies initiated by a single foundress, and gives them sufficient neuter support staff (workers and soldiers) to enable earlier production of fertile alates. Using a population model (Leslie matrix) I construct isoclines of equal population growth which show values of early age class probability of survival and reproductive output favoring monogyny or polygyny under individual selection. This model of queen mutualism accounts for the risk of a female in a polygynous group not succeeding as the final surviving queen.Multiple primary queens are considered rare in termites, but a review of the literature demonstrates that they may be more widespread than is currently recognized. Polygyny in termites has received scant attention but is of significance as an example of a further ecological and evolutionary convergence between the phylogenetically independent orders Isoptera and Hymenoptera.  相似文献   

19.
Division of reproductive labor in insect societies is often based on worker self-restraint and both queen and worker policing. Workers of many hitherto studied wasps, bees and ants do not lay eggs in the presence of a queen. However, it is presently unclear how far these observations in a few select clades can be generalized. We investigated if and how queens maintain a reproductive monopoly in colonies of the elongate twig ant, Pseudomyrmex gracilis, a member of the previously unstudied ant subfamily Pseudomyrmecinae. Colonies are usually headed by a single, singly mated queen (monogyny, monandry). Workers therefore would be more closely related to males produced by other workers (r?=?0.375) than to the sons of queens (r?=?0.25). Nevertheless, workers appear to refrain from laying male-destined eggs in the presence of the queen. In queenless conditions, workers form dominance hierarchies by antennal boxing, and only one or a few high-ranking individuals readily begin to lay eggs. When returned into a queenright colony, egg-laying workers are immediately bitten, stung and expelled or killed by other workers. While the composition of cuticular hydrocarbons clearly differed between castes, it less clearly reflected worker ovarian development. An association with worker ovarian development that would allow workers to monitor the reproductive status of nestmates could only be tentatively postulated for certain substances. Our study broadens our knowledge about reproductive conflict in social Hymenoptera and shows that worker sterility in the presence of a queen is more common in monogynous, monandrous ants than expected from relatedness alone.  相似文献   

20.
Summary Technomyrmex albipes makes huge polydomous colonies which consist of up to several millions of adults. In field colonies, dealate queens are rare or absent, though winged males and winged females emerge annually (synchronously) in large numbers from late may to mid June. Field and laboratory observations showed that the reproduction of established colonies was performed by wingless females inseminated by wingless males from the same colony. Dissections and morphological examinations revealed that wingless females are workers with no spermatheca and intercastes with a spermatheca. Most intercastes were inseminated, had developed ovaries, and seemed to reproduce, while workers did not seem to reproduce. Extranidal tasks were performed only by workers. Approximately half of the adult population were intercastes, and wingless males represented only a small portion of all adults, the rest being nonreproductive workers. Intercastes and wingless males were produced throughout the year except in winter. The winged females and males copulate outside the nest only after the nuptial flight and the dealate females are able to perform independent founding, but they are also eventually supplanted by intercastes. The adoption of dealate queens by an established natal colony did not seem to occur. Thus we infer that in this species the winged reproductives disperse and found new colonies, while inbred wingless reproductives allow the enlargement and budding of colonies. This species has a special trophic-flow system. There is no trophallaxis among adults, and nutrient transfer from adults to other colony members is achieved exclusively by specialized trophic eggs. All females (dealate queens, intercastes, and workers) seem to produce trophic eggs. This aphid-like life cycle, i.e., the occurrence of both winged and wingless reproductive forms, may have evolved as an adaptation supporting the development of secondary polygyny and polydomy.Offprint requests to: K. Yamauchi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号