首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Grazing management necessarily emphasizes the most spatially extensive vegetation assemblages, but landscapes are mosaics, often with more mesic vegetation types embedded within a matrix of drier vegetation. Our primary objective was to contrast effects of equine grazing on both subalpine vegetation structure and associated arthropods in a drier reed grass (Calamagrostis muiriana) dominated habitat versus a wetter, more productive sedge habitat (Carex utriculata). A second objective was to compare reed grass and sedge as habitats for fauna, irrespective of grazing. All work was done in Sequoia National Park (CA, USA), where detailed, long-term records of stock management were available. We sampled paired grazed and control wet meadows that contained both habitats. There were moderate negative effects of grazing on vegetation, and effects were greater in sedge than in reed grass. Conversely, negative grazing effects on arthropods, albeit limited, were greater in the drier reed grass, possibly due to microhabitat differences. The differing effects on plants and animals as a function of habitat emphasize the importance of considering both flora and fauna, as well as multiple habitat types, when making management decisions. Sedge supported twice the overall arthropod abundance of reed grass as well as greater diversity; hemipteran and dipteran taxa were particularly abundant in sedge. Given the greater grazing effects on sedge vegetation, greater habitat provision for terrestrial arthropods, and value as aquatic arthropod habitat, the wetter sedge assemblage is worthy of additional consideration by managers when planning for grazing and other aspects of land usage.  相似文献   

2.
The factor of scale in ecosystem mapping   总被引:2,自引:0,他引:2  
  相似文献   

3.
Depletion of vegetation by overgrazing in arid environments has long-lasting effects on the environmental quality over extended geographic areas. An adequate inspection of habitat changes requires scaled up procedures that would allow assessing end-points of environmental status in broad areas that would be based on processes occurring at the plant canopy level. Our purpose was to find indicators of land degradation–conservation status for use in land monitoring programs and in planning management practices that would be amenable to further up-scaling for use with remotely sensed imagery. In several sites of the Patagonian Monte differing in the impact of grazing management, we evaluated vegetation attributes at three spatial scales. At the population scale, we found that the severity of grazing impact was characterized by the reduction of the palatable grass, P. ligularis, outside and inside shrub canopies. At the vegetation patch scale, we found that land degradation by domestic herbivore impact was characterized by changes in attributes of patch shape (radius, height, internal canopy cover) and patch abundance. At the plant community scale, we found that the structure of the plant canopy as described using Fourier analysis of cover data changed after long-term grazing impact consistently with the modifications in plant population and patch structures. We present a conceptual multiscale scenario of structural changes triggered by domestic herbivore impact, and quantitative indicators of plant structure and processes useful to develop management strategies of the Patagonian-Monte that would conserve its natural habitats. The developed end-points are also amenable for use in land conservation assessment through remotely sensed imagery.  相似文献   

4.
Fire and grazing are common management schemes of grasslands globally and are potential drivers of reptilian and amphibian (herpetofauna) metacommunity dynamics. Few studies have assessed the impacts of fire and cattle grazing on herpetofauna assemblages in grasslands. A patch-burn grazing study at Osage Prairie, MO, USA in 2011–2012 created landscape patches with treatments of grazing, fire, and such legacies. Response variables were measured before and after the application of treatments, and I used robust-design occupancy modeling to estimate patch occupancy and detection rate within patches, and recolonization and extinction (i.e., dispersal) across patches. I conducted redundancy analysis and a permuted multivariate analysis of variance to determine if patch type and the associated environmental factors explained herpetofauna assemblage. Estimates for reptiles indicate that occupancy was seasonally constant in Control patches (ψ ~ 0.5), but declined to ψ ~ 0.15 in patches following the applications of fire and grazing. Local extinctions for reptiles were higher in patches with fire or light grazing (ε ~ 0.7) compared to the controls. For the riparian herpetofaunal community, patch type and grass height were important predictors of abundance; further, the turtles, lizards, snakes, and adult amphibians used different patch types. The aquatic amphibian community was predicted by watershed and in-stream characteristics, irrespective of fire or grazing. The varying responses from taxonomic groups demonstrate habitat partitioning across multiple patch types undergoing fire, cattle grazing, and legacy effects. Prairies will need an array of patch types to accommodate multiple herpetofauna species.  相似文献   

5.
This work was undertaken to analyze nutrient contents of vegetation in an alpine meadow—Tungnath, North-West Himalaya, India. The study pertains to the uptake, transfer and release of four main macronutrients (organic carbon, total nitrogen, total potassium and total phosphorus) in grazed (exposed to extensive grazing by cattles) and ungrazed (grazing completely prohibited) communities. Mineral concentration was recorded higher for the ungrazed sites compared to the grazed sites, and maximum standing state of nutrients was found in roots. Belowground compartment (roots) contributed maximum share of mineral elements to soil. Litter nutrients release was low because of low microbial activity and continuous removal of phytomass. Observations reveal that there was very little amount of nutrient release from phytomass and vegetation in alpine are very poor source of mineral recycling. Low transfer rate of minerals from one compartment to other is adequate for greater amount of these minerals that are translocated back into the storage organs. A small proportion get removed through rain splash or through the removal of hay during grazing as relatively high release rates in ungrazed sites when compared to grazed sites was observed. This translocation can be considered as an important adaptation in alpine plants for survival during adverse environmental conditions, against all types of biotic pressures and also for regeneration in the forthcoming growing season.  相似文献   

6.
This study developed a comprehensive framework to incorporate landscape ecological principles into the landscape planning and design process, with a focus on the design of new patches in the rural landscape. The framework includes two interrelated phases: patch analyst (PA) and patch designer (PD). The patch analyst augments the process of landscape inventory and analysis. It distinguishes nodes (associated with potential habitat patches) from links (associated with corridors and stepping stones between habitats). For natural vegetation patches, characteristics such as size, shape, and spatial arrangement have been used to develop analytical tools that distinguish between nodes and links. The patch designer uses quantitative information and analytical tools to recommend locations, shapes, sizes, and composition of introduced patches. The framework has been applied to the development of a new golf course in the rural Mediterranean landscape of Apulia, Southern Italy. Fifty new patches of Mediterranean maquis (24 patches) and garrigue (26 patches) have been designed and located in the golf course, raising the overall natural vegetation area to 70 ha (60% of total property). The framework has potential for use in a wide variety of landscape planning, design, and management projects.  相似文献   

7.
This study assessed the relationship among land use, riparian vegetation, and avian populations at two spatial scales. Our objective was to compare the vegetated habitat in riparian corridors with breeding bird guilds in eight Rhode Island subwatersheds along a range of increasing residential land use. Riparian habitats were characterized with fine-scale techniques (used field transects to measure riparian vegetation structure and plant species richness) at the reach spatial scale, and with coarse-scale landscape techniques (a Geographic Information System to document land-cover attributes) at the subwatershed scale. Bird surveys were conducted in the riparian zone, and the observed bird species were separated into guilds based on tolerance to human disturbance, habitat preference, foraging type, and diet preference. Bird guilds were correlated with riparian vegetation metrics, percent impervious surface, and percent residential land use, revealing patterns of breeding bird distribution. The number of intolerant species predominated below 12% residential development and 3% impervious surface, whereas tolerant species predominated above these levels. Habitat guilds of edge, forest, and wetland bird species correlated with riparian vegetation. This study showed that the application of avian guilds at both stream reach and subwatershed scales offers a comprehensive assessment of effects from disturbed habitat, but that the subwatershed scale is a more efficient method of evaluation for environmental management.  相似文献   

8.
Disturbance regime is a critical organizing feature of stream communities and ecosystems. The position of a given reach in the river basin and the sediment type within that reach are two key determinants of the frequency and intensity of flow-induced disturbances. We distinguish between predictable and unpredictable events and suggest that predictable discharge events are not disturbances. We relate the dynamics of recovery from disturbance (i.e., resilience) to disturbance regime (i.e., the disturbance history of the site). The most frequently and predictably disturbed sites can be expected to demonstrate the highest resilience. Spatial scale is an important dimension of community structure, dynamics, and recovery from disturbance. We compare the effects on small patches (⩽1 m2) to the effects of large reaches at the river basin level. At small scales, sediment movements and scour are major factors affecting the distribution of populations of aquatic insects or algae. At larger scales, we must deal with channel formation, bank erosion, and interactions with the riparian zone that will affect all taxa and processes. Our understanding of stream ecosystem recovery rests on our grasp of the historical, spatial, and temporal background of contemporary disturbance events.  相似文献   

9.
A method is proposed to quantify disturbance impact on isolated habitats. For every landscape patch, the breakpoint distance, defined as the penetration distance for which equality of interior and edge habitat is observed, can be calculated. Disturbance with equal impact at all patch sides is assumed. Effects of patch compactness, size, convolution, and perforation are discussed. The potential use of the measure for nature reserve design is discussed. The breakpoint distance follows the reserve design guidelines for individual patches, based on island biogeography and is consistent with the form and function principle. A large breakpoint distance is preferred for natural habitats. Small size, small compactness, intense convolution, and the occurrence of many gaps depress the breakpoint distance.  相似文献   

10.
Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.  相似文献   

11.
Subalpine meadows in the Dongling Mountains (located at E115o26′-115o40′, N40o00′-40o05′) of Beijing, China are important for tourism and the provision of ecosystem services. However, because of poor management serious degradation has occurred on these subalpine meadows. The aim of this paper is to present a quantitative analysis of effects of tourism disturbance and topography on the status and diversity of montane meadow communities and to provide direction for improved management. Sixty quadrats of 2 × 2 m2 along 10 transects were set up to collect data on site characteristics and vegetation status. The relationships between community composition and structure, species diversity, and tourism disturbance and topographic variables were analyzed by multivariate methods (TWINSPAN and CCA). The results showed that eight meadow communities were identified by TWINSPAN. Most of them were seriously degraded. The first CCA axis identified an elevation and tourism disturbance intensity gradient, which illustrated that tourism disturbance and elevation were most important factors influencing meadow types, composition and structure. Some resistant species and response species to tourism disturbance were identified and can be used as indicator species of tourism disturbance. Species richness, heterogeneity and evenness were closely related to tourism disturbance and elevation. It is concluded that tourism disturbance must be controlled to enable grassland rehabilitation to occur in the meadows. Measures of effective management of the meadows were discussed.  相似文献   

12.
Design of landscape is the process of the arrangement of spatial features with the objective of sustaining ecosystem services, and maintaining ecological functionality to meet societal needs. Along a gradient of cultivation intensity, the functional quality of agricultural landscape was explored and the relationships between landscape metrics and functional quality were analyzed, in order to make effective recommendations for landscape design aimed at sustainable land use schemes. The functional quality of landscape was calculated using the InVest model for 20 farm landscapes (North-Eastern Italy) where biodiversity (plant taxa) and sensitivity to disturbance (hemeroby) were used as model inputs. Results highlighted the importance of specific habitat types such as meadows and woodlands rather than other habitats for improving the biodiversity of agricultural landscapes. A high proportion of these habitats enhanced the functional quality of the landscape when the habitats were organized in large and not isolated patches in heterogeneous landscapes.  相似文献   

13.
While transboundary waters are widely advocated to be best managed at the basin level, practical experience in transboundary waters at the basin vis‐à‐vis other scales has not been systematically examined. To understand past experiences in transboundary water management at alternate scales, this paper: (i) determines the relative abundance of water treaties at different scales and (ii) elucidates how transboundary water law varies according to the scale to which it applies. The paper developed a scale typology with six groups, and systematically applied it to stratify transboundary water treaties. Treaty contents were then compared across scales according to the following set of parameters: primary issue area, temporal development, and important water management attributes. Results of this work reveal: (i) treaties tend to focus on hydropower and flood control at smaller scales, and organizations and policies at larger scales; (ii) a temporal trend toward treaties concluded at larger scales; and (iii) a higher proportion of treaties is at larger scales in Africa and Asia than in Europe and the Americas. These findings suggest that smaller scale cooperation may constitute a more constructive scale in which to achieve development‐oriented cooperation. Further, scope may exist to complement basin scale cooperation with cooperation at smaller scales, in order to optimize transboundary water management. In the context of basin‐wide management frameworks, Africa and Asia may benefit from greater emphasis on small‐scale transboundary water cooperation.  相似文献   

14.
Abstract: A method was developed to characterize ecological integrity of riparian sites based on the abundance of hydric species. This wetland index can be calculated with species data, or with community type data as performed here. Classified riparian community types were used to describe vegetation at 14 livestock exclosures and adjacent grazed areas. Community type wetland index values were generated and used to calculate site wetland index values. It was hypothesized that removal of livestock would result in higher wetland index values because of release from herbivory and decreased physical disturbance of vegetation, streambanks, and soil. The wetland index for exclosures was about 12% higher than grazed sites; differences were statistically significant (p < 0.01) based on paired t‐tests. The increase in hydric vegetation after livestock exclusion may have contributed to the greater bank stability (p = 0.002) and smaller width‐to‐depth ratio (p = 0.005) in exclosures. Challenges were encountered in using community types to describe and compare site vegetation, which could be avoided with species data collection. The wetland index can be a tool to monitor sites over time, compare sites with similar environments, or compare sites for which environmental differences can be accounted.  相似文献   

15.
We assess the spatial and geomorphic fragmentation from the recent Eagle Ford Shale play in La Salle County, Texas, USA. Wells and pipelines were overlaid onto base maps of land cover, soil properties, vegetation assemblages, and hydrologic units. Changes to continuity of different ecoregions and supporting landscapes were assessed using the Landscape Fragmentation Tool (a third-party ArcGIS extension) as quantified by land area and continuity of core landscape areas (i.e., those degraded by “edge effects”). Results show decreases in core areas (8.7 %; ~33,290 ha) and increases in landscape patches (0.2 %; ~640 ha), edges (1.8 %; ~6940 ha), and perforated areas (4.2 %; ~16230 ha). Pipeline construction dominates landscape disturbance, followed by drilling and injection pads (85, 15, and 0.03 % of disturbed area, respectively). An increased potential for soil loss is indicated, with 51 % (~5790 ha) of all disturbance regimes occurring on soils with low water-transmission rates (depth to impermeable layer less than 50 cm) and a high surface runoff potential (hydrologic soil group D). Additionally, 88 % (~10,020 ha) of all disturbances occurred on soils with a wind erodibility index of approximately 19 kt/km2/year (0.19 kt/ha/year) or higher, resulting in an estimated potential of 2 million tons of soil loss per year. Results demonstrate that infrastructure placement is occurring on soils susceptible to erosion while reducing and splitting core areas potentially vital to ecosystem services.  相似文献   

16.
Recreational beach use with off-road vehicles is popular, but potentially harmful from an environmental perspective. Beaches are important habitats to invertebrates such as ghost crabs of the genus Ocyopde, which excavate extensive and elaborate burrows. Ghost crabs are sensitive to human pressures and changes in burrow architecture may thus be a consequence of disturbance by vehicles—the predictive hypothesis of this article. This was tested during the austral spring and summer by comparing 305 burrow casts between beaches open and closed to vehicles in Eastern Australia. Traffic influenced burrow architecture: there were smaller crabs on vehicle-impacted beaches, and after the peak traffic period (Christmas and New Year holidays), these crabs had tunnelled deeper into the sediment on shores rutted by cars. Crabs constructed all types of previously described burrows, but, significantly, smaller crabs from vehicle-impacted beaches simplified their shapes following heavy traffic disturbance from four (I, J, Y, M) to only two types (I, Y). These data support a model of active behavioural responses to disturbance from vehicles, extending the known effects of beach traffic to impacts on behavioural traits of the beach fauna.  相似文献   

17.
The response of forest understory vegetation to trampling applied at different temporal and spatial scales was determined in a cliff-edge forest in Ontario, Canada. Three frequencies (0, 50, 500 passes per year) of short-term trampling (one year) were applied to plots previously undisturbed. Existing trails that had received three frequencies (approx. 100, 500, 25,000 passes per year) of long-term trampling (18 years) were also studied. Community composition, species richness, and individual species frequency were recorded in plots within 4 m and (or) 1 m of the patch centerline. The quantitative and qualitative form of plant response to increased trampling was compared for short-term and long-term treatments, both within 4 m and within 1 m of the path centerline, to judge the consistency of trampling effects at different temporal and spatial scales. As trampling frequency increased, community composition changed progressively, but consistently, in plots both within 4 m and 1 m of the path centerline. Species richness was less affected by trampling and only decreased within 1 m of the path centerline at the highest level of trampling (25,000 passes per season for 18 years). Effects of trampling on individual species frequency were much less consistent at different temporal and spatial scales of trampling. The scale-dependence results suggest that field workers and resource managers both should try explicitly to include and define multiple scale components when trying to ascertain the response of vegetation to human disturbance factors.  相似文献   

18.
Shrub encroachment into open woodland is a widespread phenomenon in semi-arid woodlands worldwide. Encroachment or woody thickening, is thought to result from overgrazing, changes in fire regimes and increased atmospheric carbon dioxide concentrations. Eighteen years after one-off shrub removal by ploughing we assessed the effects of four different land management systems resulting from two levels each of grazing (grazed, ungrazed) with and without ploughing, on the cover of landscape units, soil surface condition, diversity of understorey plants and density of shrubs. We recorded 2–7 times more patches under conventional conservation (unploughed-ungrazed) than the others treatments, and plant cover and diversity were greater on the two conservation (ungrazed) plots, irrespective of ploughing. Soils under shrubs and log mounds had greater indices of infiltration, stability and nutrients. Shrub density under the active pastoral (ploughed-grazed) treatment was two and a half times greater than that in other treatments, but results were not significant. The effects of different treatments on shrubs were largely species-specific. Overall, our results suggest that ploughing does not provide long-term control of encroaching shrubs.  相似文献   

19.
Water quality in streams is dependent on landscape metrics at catchment and wetland scales. A study was undertaken to evaluate the correlation between landscape metrics, namely patch density and area, shape, heterogeneity, aggregation, connectivity, land-use ratio, and water quality variables (salinity, nutrients, sediments, alkalinity, other potential pollutants and pH) in the agricultural areas of a semiarid Mediterranean region dominated by irrigated farmlands (NE Spain). The study also aims to develop wetland construction criteria in agricultural catchments. The percentage of arable land and landscape homogeneity (low value of Simpson index) are significantly correlated with salinity (r(2) = 0.72) and NO(3)-N variables (r(2) = 0.49) at catchment scale. The number of stock farms was correlated (Spearman's corr. = 0.60; p < 0.01) with TP concentration in stream water. The relative abundance of wetlands and the aggregation of its patches influence salinity variables at wetland scale (r(2) = 0.59 for Na(+) and K(+) concentrations). The number and aggregation of wetland patches are closely correlated to the landscape complexity of catchments, measured as patch density (r(2) = 0.69), patch size (r(2) = 0.53), and landscape heterogeneity (r(2) = 0.62). These results suggest that more effective results in water quality improvement would be achieved if we acted at both catchment and wetland scales, especially reducing landscape homogeneity and creating numerous wetlands scattered throughout the catchment. A set of guidelines for planners and decision makers is provided for future agricultural developments or to improve existing ones.  相似文献   

20.
Over the last fifty years, almost half of the steppe rangeland in the Central Anatolian Region of Turkey (CAR) has been converted to cropland without an equivalent reduction in grazing animals. This shift has led to heavy grazing pressure on rangeland vegetation. A study was initiated in June 2003 using 6 multiscale Modified-Whittaker plots to determine differences in plant composition between areas that have not been grazed in 27 years with neighboring grazed plant communities. A total of 113 plant species were identified in the study area with the ungrazed plots containing 32 plants more than the grazed plots. The major species were Astragalus acicularis, Bromus tomentellus, Festuca valesiaca, Genista albida, Globularia orientalis, Poa bulbosa, and Thymus spyleus ssp rosulans. Grazing impacts on forbs were more pronounced than for grasses and shrubs. Based on Jaccard’s index, there was only a 37% similarity of plant species between the two treatments. Our study led to four generalizations about the current grazing regime and long-term exclosures in the steppe rangeland around the study area: (1) exclosures will increase species richness, (2) heavy grazing may have removed some plant species, (3) complete protection from grazing for a prolonged period of time after a long history of grazing disturbance may not lead to an increase in desirable plant species with a concomitant improvement in range condition, and (4) research needs to be conducted to determine how these rangelands can be improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号