首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
2.
An Interstate Technology and Regulatory Council (ITRC) forum was recently held that focused on case studies in which bioremediation of dense nonaqueous‐phase liquids (DNAPLs) was performed. This first case study, the Test Area North (TAN) site of the Idaho National Engineering and Environmental Laboratory, involves a trichloroethene (TCE) residual source area in a deep, fractured basalt aquifer that has been undergoing enhanced bioremediation since January 1999. Complete dechlorination from TCE to ethene was documented within nine months of operation, and sodium lactate injections were shown to enhance TCE mass transfer from the residual source. Since that time, optimization of injection strategies has maintained efficient dechlorination while demonstrating accelerated cleanup at a lower cost by changing to a whey powder amendment that solubilizes DNAPL. © 2006 Wiley Periodicals, Inc.  相似文献   

3.
Commodore Solution Technologies, Inc. has developed an innovative total systems approach to environmental remediation that utilizes a patented chemistry called Solvated Electron Technology (SETTM). Solvated electron solutions are some of the most powerful reducing agents know. Formed by dissolving alkali and alkaline-earth metals in anhydrous liquid ammonia to produce a solution of metal cations and free electrons, solvated electron solutions are capable of providing reductants of great activity and uniqueness. They provide a highly useful mechanism for the reductive destruction of many organic molecules and are extremely effective in the dehalogenation of halogenated organic compounds. Commodore has received a nation-wide EPA operating permit for the nonthermal destruction of PCBs using this process. The SoLVTM process is a total solution approach that incorporates SETTM with pre-and post-treatments, when necessary, for environmental cleanup. It is applicable to a broad range of substrates including liquids, solids, soils, and job materials. This article presents results from several pilot, field, and commercial validation studies utilizing the SoLVTM process.  相似文献   

4.
A novel copolymer system has been synthesized using methyl hydroquinone diacetate (MHQDA), 1,4 naphthalene dicarboxylic acid (1,4 NDCA), and polybutylene terephthalate (PBT) using the melt polymerization technique. The optimum kinetic parameters pertinent to this system are reported in this study. A simple second-order reaction sequence summarizes catalyzed and uncatalyzed reactions between MHQDA, 1,4 NDCA, and PBT. The kinetic parameters for the copolymerization reaction were determined using a new second-order model. This technique was used to compute the moles of acetic acid generated in the polymerization process. The model was compared to that of the experimentally determined data. Close comparison (percentage error of less than 5%) was obtained between the experimental and theoretical data. The kinetic data support block copolyester formation. The thermal data also supports formation of block polymers.  相似文献   

5.
Natural remediation is moving toward the forefront as engineers clean groundwater at the Savannah River Site (SRS), a major Department of Energy (DOE) installation near Aiken, South Carolina. This article reviews two successful, innovative remediation methods currently being deployed: biosparging to treat chlorinated solvents and phytoremediation to address tritium in groundwater. The biosparging system reintroduces oxygen into the groundwater and injects nutrient compounds for in‐situ remediation. The system has greatly reduced the concentrations of trichloroethylene (TCE) and vinyl chloride in wells downgradient from a sanitary landfill (SLF). Phytoremediation is an emerging technology that promises effective and inexpensive cleanup of certain hazardous wastes. Using natural processes, plants can break down, trap and hold, or transpire contaminants. This article discusses the use of phytoremediation to reduce the discharge of tritium to an on‐site stream at SRS. © 2002 Wiley Periodicals Inc. *  相似文献   

6.
7.
This paper presents an integrated system for the assessmentof technical and non-technical measures that are putforward in order to reduce air pollution levels in urbanareas. In contrast to the majority of the currentlyemployed assessment tools, this system allows for theevaluation of any proposed air pollution control measure interms of its combined impact on air quality and socialwelfare, by correlating the environmental and economicaspects of alternative air pollution abatement solutions.Based on the multi-pollutant, multi-effect concept, thesystem presented aims in providing policy-makers with areliable tool for the objective assessment of the mostcost-effective packages of measures, the latter beingallocated according to the particular features and needs ofthe areas examined.  相似文献   

8.
Old and unlined landfill sites pose a risk to groundwater and surface water resources. While landfill leachate plumes in sandy aquifers have been studied, landfills in clay till settings and their impact on receiving water bodies are not well understood. In addition, methods for quantitatively linking soil and groundwater contamination to surface water pollution are required. This paper presents a method which provides an estimate of the contaminant mass discharge, using a combination of a historical investigation and contaminant mass balance approach. The method works at the screening level and could be part of a risk assessment. The study site was Risby Landfill, an old unlined landfill located in a clay till setting on central Zealand, Denmark. The contaminant mass discharge was determined for three common leachate indicators: chloride, dissolved organic carbon and ammonium. For instance, the mass discharge of chloride from the landfill was 9.4 ton/year and the mass discharge of chloride to the deep limestone aquifer was 1.4 ton/year. This resulted in elevated concentrations of leachate indicators (chloride, dissolved organic carbon and ammonium) in the groundwater. The mass discharge of chloride to the small Risby Stream down gradient of the landfill was approximately 31 kg/year. The contaminant mass balance method worked well for chloride and dissolved organic carbon, but the uncertainties were elevated for ammonium due to substantial spatial variability in the source composition and attenuation processes in the underlying clay till.  相似文献   

9.
10.
The potential effectiveness of a new composite-aggregate capping technology, AquaBlokTM—in physically isolating contaminated, fine-grained sediments derived from an Ohio, Lake Erie tributary—was evaluated in the laboratory. In particular, large-scale settling-column studies were conducted to determine the degree to which composite-aggregate material penetrates into and/or mixes with the sediment, perhaps affecting the degree to which sediment could be physically isolated through capping. Additionally, large-scale flume studies were conducted to determine resistance of the composite-aggregate material to significant and long-term, fluvial-like erosive forces; the resistance of other potential capping materials was also evaluated for comparison. Experimental results indicate that the composite-aggregate material effectively isolates sediment through the formation of a continuous and relatively erosion-resistant, hydrated capping layer atop the sediments.  相似文献   

11.
Journal of Material Cycles and Waste Management - Japan has been promoting 3R (reduce, reuse, and recycle) policies for several decades, but the recycling rate of the whole country has leveled off,...  相似文献   

12.
Journal of Material Cycles and Waste Management - Household pharmaceutical waste (HPW) contains several antibiotics and hormones, contaminating the environment, wildlife and human beings. Existing...  相似文献   

13.
Polycyclic aromatic hydrocarbons (PAHs) and metal(loid) mass flux estimates and forensic assessment using PAH diagnostic ratios were used to inform remediation decision making at the Sydney Tar Ponds (STPs) and Coke Ovens cleanup project in eastern Canada. Environmental effects monitoring of surface marine sediments in Sydney Harbor indicated significantly higher PAH concentrations during the first year of remediation monitoring compared to baseline. This was equivalent to PAH loadings of ~2,000 kg over a 15‐month period. Increases in sediment PAH concentrations raised serious concerns for regulators, who requested cessation of remediation activities early in the $400 M (CAD) project. Historically, the STPs were reported as the primary source of PAH contamination in Sydney Harbor with estimated discharges of 300 to 800 kg/year between 1989 and 2001. Mass flux estimates of PAHs and metal(loid)s and PAH diagnostic ratios were used to evaluate if increases in PAH concentrations in marine sediments were the result of the STPs remediation activities. PAH mass flux estimates approximated that 17 to 97 kg/year were discharged from the STPs during three years of remediation and were corroborated by an independent PAH flux estimate of 119 kg in year 1. PAH fluxes to the Sydney Harbor were mostly surface water derived, with groundwater contributing negligible quantities (0.002–0.005 kg/year). Fluxes of metal(loid)s to harbor sediments were stable or declining across all years and were mirrored in sediment metal(loid) concentrations, which lacked temporal variation, unlike total PAH concentrations. Flux results were also corroborated using PAH diagnostic ratios, which found a common source of PAHs. Coal combustion was likely the principal source of PAHs and not migration from the STPs during remediation. Although short‐term residual sediment PAH increases during onset of remediation raised concerns for regulators, calls for premature cessation of remediation early in the project were unwarranted based on only one year of monitoring data. Mass flux estimates and forensic assessments using PAH diagnostic ratios proved useful tools to inform remediation decision making that helped environmental protection and reduced costs associated with lost cleanup time.  相似文献   

14.
In situ treatability studies are being conducted to evaluate various in situ technologies to manage groundwater contamination at the NASA Marshall Space Flight Center in Huntsville, Alabama. The focus of these studies is to evaluate remediation options for contaminated (mostly aerobic) groundwater occurring within the basal portion of a clayey residuum called the rubble zone. The tension‐saturated media and unsaturated media lying above the rubble zone are also being treated where they make up a significant component of the contaminant mass. An in situ chemical reduction field pilot test was implemented (following bench‐scale tests) during July and August 2000. The test involved the injection of zero‐valent iron powder in slurry form, using the FeroxSM process patented by ARS Technologies, Inc. The pilot test focused on trichloroethene (TCE)‐contaminated groundwater within the rubble zone. Maximum pre‐injection concentrations of about 72,800 micrograms per liter (μg/l) were observed and no secondary sources are believed to exist beneath the area. The potential presence of unexploded ordnance forced an implementation strategy where source area injections were completed, as feasible, followed by overlapping injections in a down gradient alignment to create a permeable reactive zone for groundwater migration. Eight post‐injection rounds of groundwater performance monitoring were completed. The results are encouraging, in terms of predicted responses and decreasing trends in contaminant levels. © 2003 Wiley Periodicals, Inc.  相似文献   

15.
Journal of Material Cycles and Waste Management - In the current study, a model was established based on AHP method for assessment of different alternatives for energy recovery from the waste in...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号