首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1,4‐Dioxane, a common co‐contaminant with chlorinated solvents, is present in groundwater at Site 24 at Vandenberg Air Force Base in California. Historical use of chlorinated solvents resulted in concentrations of 1,4‐dioxane in groundwater up to approximately 2,000 μg/L. Starting in 2013, an in situ propane biosparge system operation demonstrated reductions in 1,4‐dioxane concentrations in groundwater. The work detailed herein extends the efforts of the first field demonstration to a second phase and confirms the biodegradation mechanism via use of stable isotope probing (SIP). After two months of operation, 1,4‐dioxane concentrations decreased approximately 45 to 83 percent at monitoring locations in the test area. The results of the SIP confirmed 13C‐enriched 1,4‐dioxane was transformed into dissolved inorganic carbon (suggesting mineralization to carbon dioxide) and incorporated into microbial biomass (likely attributed to metabolic uptake of biotransformation intermediates or of carbon dioxide).  ©2016 Wiley Periodicals, Inc.  相似文献   

2.
The chlorinated solvent stabilizer 1,4‐dioxane (DX) has become an unexpected and recalcitrant groundwater contaminant at many sites across the United States. Chemical characteristics of DX, such as miscibility and low sorption potential, enable it to migrate at least as far as the chlorinated solvent from which it often originates. This mobility and recalcitrance has challenged remediation professionals to redesign existing treatment systems and monitoring networks to accommodate widespread contamination. Furthermore, remediation technologies commonly applied to chlorinated solvent co‐contaminants, such as extraction and air stripping or in situ enhanced reductive dechlorination, are relatively ineffective on DX removal. These difficulties in treatment have required the industry to identify, develop, and demonstrate new and innovative technologies and approaches for both ex situ and in situ treatment of this emerging contaminant. Great strides have been made over the past decade in the development and testing of remediation technologies for removal or destruction of DX in groundwater. This article briefly summarizes the fate and transport characteristics of DX that make it difficult to treat, and presents technologies that have been demonstrated to be applicable to groundwater treatment at the field scale.  ©2016 Wiley Periodicals, Inc.  相似文献   

3.
This study characterizes the 1,4‐dioxane biodegradation potential for an in situ methane‐enhanced biostimulation field pilot study conducted at Air Force Plant 44, located south of the Tucson International Airport in Arizona. In this study, the use of methane as the primary substrate in aerobic cometabolic biodegradation of 1,4‐dioxane is evaluated using environmental molecular diagnostic tools. The findings are compared to an adjacent pilot study, wherein methane was generated via enhanced reductive dechlorination and where methane monooxygenase and methane‐oxidizing bacteria were also found to be abundant. This article also presents the use of 13C and 2H isotopic ratio enrichment, a more recent tool, to support the understanding of 1,4‐dioxane biodegradation in situ. This study is the first of its kind, although alkane gas‐enhanced biodegradation of 1,4‐dioxane has been evaluated extensively in microcosm studies and propane‐enhanced biodegradation of 1,4‐dioxane has been previously studied in the field. ©2016 Wiley Periodicals, Inc.  相似文献   

4.
1,4‐Dioxane (dioxane) is a contaminant of emerging concern that is classified by the U.S. Environmental Protection Agency as a likely human carcinogen. Dioxane has been used as a minor or major ingredient in many applications, and is also generated as an unwanted by‐product of industrial processes associated with the manufacturing of polyethylene, nonionic surfactants, and many consumer products (cosmetics, laundry detergents, shampoos, etc.). Dioxane is also a known stabilizer of chlorinated solvents, particularly 1,1,1‐trichloroethane, and has been commonly found comingled with chlorinated solvent plumes. Dioxane plumes at chlorinated solvent sites can complicate site closure strategies, which to date have not typically focused on dioxane. Aggressive treatment technologies have greatly advanced and are clearly capable of achieving lower parts per billion cleanup criteria using ex situ advanced oxidation processes and sorption media. In situ chemical oxidation has also been demonstrated to effectively remediate dioxane and chlorinated solvents. Other in situ remedies, such as enhanced bioremediation, phytoremediation, and monitored natural attenuation, have been studied; however, their ability to achieve cleanup levels is still somewhat questionable and is limited by co‐occurring contaminants. This article summarizes and provides practical perspectives on dioxane analysis, plume stability relative to other contaminants, and the development of investigation tools and treatment technologies.  相似文献   

5.
6.
A dual isotope technology based on compound‐specific stable isotope analysis of carbon and hydrogen (2D‐CSIA) was recently developed to help identify sources and monitor in situ degradation of the contaminant 1,4‐dioxane (1,4‐D) in groundwater. Site investigation and optimized remediation have been the focus of thousands of CSIA applications completed for volatile organic contaminants (VOCs) worldwide. CSIA for the water miscible 1,4‐D, however, has been technically challenging. The most commercially available sample preparation settings “Purge and Trap” for VOC could not efficiently extract 1,4‐D out of water for a reliable CSIA measurement, especially when the concentration is below 100 μg/L. Such a high reporting limit has prevented CSIA from being used for effective site investigation and remediation monitoring at most 1,4‐D contaminated sites, where 1,4‐D is often present at very low ppb levels. This article outlines the recent breakthrough in 2D‐CSIA technology for 1,4‐D in water, reported down to ~1 μg/L for carbon, and ~10 μg/L to 20 μg/L for hydrogen using solid‐phase extraction based on EPA Method 522, and its benefit is highlighted through a case study at a 1,4‐D contaminated site. ©2016 Wiley Periodicals, Inc.  相似文献   

7.
1,4‐Dioxane (14DX) is classified as a probable human carcinogen by the US Environmental Protection Agency (EPA), and it has toxic effects on the kidney and liver. EPA's Health Advisory Level (HAL) for 14DX is 0.35 micrograms per liter (μg/L). Accordingly, several states have lowered their drinking water advisory levels and site cleanup levels. The widespread occurrence of 14DX in contaminated groundwater has contributed to a growing demand for remediation services. Treating 14DX is a challenge due to its very low Henry's law constant, low sorption potential, and strong ether linkages. The primary solution for 14DX remediation has been various forms of advanced oxidation processes (AOP), namely pump and treat followed by ex situ treatment with catalyzed ultraviolet light oxidation or ozone‐peroxidation. Many of the available advanced oxidation systems are complex, requiring careful monitoring and maintenance to adjust for variable source water and operating conditions. Synthetic media is a relatively new 14DX treatment technology that overcomes many of the operating challenges faced by existing technologies. AMBERSORB? 560 (AMBERSORB) has recently demonstrated the effective removal of 14DX over a wide range of concentrations and operating conditions, including those created by in situ thermal remediation. Consistent and reliable treatment down to sub‐0.3 μg/L levels differentiates synthetic media technology from other 14DX treatment technologies. AMBERSORB provides a solution to the problem of “stranded capital” by offering a 14DX treatment system capable of meeting regulatory standards today and in the foreseeable future. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
The synthetic chemical, 1,4‐dioxane, is classified by the U.S. Environmental Protection Agency (EPA) as a probable human carcinogen. Between 2013 and 2015, the EPA detected 1,4‐dioxane in public drinking water supplies in 45 states at concentrations up to 33 µg/L and in groundwater from releases at hazardous waste sites across the United States. Although a Federal maximum contaminant level drinking water standard has not yet been proposed, state‐specific standards and criteria are as low as 0.3 µg/L. 1,4‐Dioxane is a recalcitrant chemical in that applications of conventional treatment technologies have had limited success in reducing concentrations in water to meet current and proposed health‐protective levels. Although mainly used as a stabilizer for the solvent 1,1,1‐trichloroethane, it has been used in other industrial processes and has been detected in a variety of consumer products, such as foods, pharmaceuticals, cosmetics, and detergents. The high aqueous solubility of 1,4‐dioxane coupled with limited solubility of chlorinated solvents typically found in conjunction with 1,4‐dioxane contamination is the primary reason for its treatment challenges. In the last several years, an alternative, cost‐effective technology has been developed that has demonstrated treatment to levels significantly lower than the Federal and state‐specific goals. This article provides a Federal and state‐by‐state summary of 1,4‐dioxane‐specific drinking water and groundwater concentration criteria and qualitative comparison of the effectiveness of conventional treatment technologies compared to the effectiveness of an alternative treatment technology. A case study is also provided to present details regarding the application of an alternative treatment technology at an active groundwater remediation site in California.  相似文献   

9.
1,4‐Dioxane remediation is challenging due to its physiochemical properties and low target treatment levels. As such, applications of traditional remediation technologies have proven ineffective. There are a number of promising remediation technologies that could potentially be scaled for successful application to groundwater restoration. Sustainable remediation is an important consideration in the evaluation of remediation technologies. It is critically important to consider sustainability when new technologies are being applied or new contaminants are being treated with traditional technologies. There are a number of social, economic, and environmental drivers that should be considered when implementing 1,4‐dioxane treatment technologies. This includes evaluating sustainability externalities by considering the cradle‐to‐grave impacts of the chemicals, energy, processes, transportation, and materials used in groundwater treatment. It is not possible to rate technologies as more or less sustainable because each application is context specific. However, by including sustainability thinking into technology evaluations and implementation plans, decisions makers can be more informed and the results of remediation are likely to be more effective and beneficial. There are a number sustainable remediation frameworks, guidance documents, footprint assessment tools, life cycle assessment tools, and best management practices that can be utilized for these purposes. This paper includes an overview describing the importance of sustainability in technology selection, identifies sustainability impacts related to technologies that can be used to treat 1,4‐dioxane, provides an approximating approach to assess sustainability impacts, and summarizes potential sustainability impacts related to promising treatment technologies. ©2016 Wiley Periodicals, Inc.  相似文献   

10.
Recent regulatory changes need more challenging treatment goals for 1,4‐dioxane. However, significant treatment limitations exist in part due to the high solubility and low Henry's law constant of 1,4‐dioxane. Two case studies are reported with substantial 1,4‐dioxane concentration reductions through in situ thermal remediation via electrical resistance heating (ERH). Concentration reductions greater than 99.8 percent of 1,4‐dioxane have been observed in the field using ERH. Concentrations of 1,4‐dioxane in air and steam extracted by an ERH vapor recovery system have also been evaluated. Laboratory studies were conducted to further understand the mechanisms that enable ERH remediation of 1,4‐dioxane. Vapor liquid equilibrium studies in water and soil were conducted and utilized to develop an ERH treatment cost model for 1,4‐dioxane. Existing field data were correlated to the 1,4‐dioxane treatment cost model. Field observations and laboratory testing indicate steam stripping that occurs through ERH remediation is an effective treatment method for 1,4‐dioxane. ©2015 Wiley Periodicals, Inc.  相似文献   

11.
1,4‐Dioxane is a synthetic industrial chemical frequently found at contaminated sites where 1,1,1‐trichloroethane was used for degreasing. It is a probable human carcinogen and has been found in groundwater at sites throughout the United States. The physical and chemical properties and behavior of 1,4‐dioxane create challenges for its characterization and treatment. It is highly mobile and has not been shown to readily biodegrade in the environment. In December 2006, the U.S. Environmental Protection Agency's Office of Superfund Remediation and Technology Innovation (OSRTI) prepared a report titled “Treatment Technologies for 1,4‐Dioxane: Fundamentals and Field Applications.” The report provides information about the chemistry of dioxane, cleanup goals, analytical methods, available treatment technologies, and site‐specific treatment performance data. The information may be useful to project managers, technology providers, consulting engineers, and members of academia faced with addressing dioxane at cleanup sites or in drinking water supplies. This article provides a synopsis of the US EPA report, which is available at http://cluin.org/542R06009 . © 2007 Wiley Periodicals, Inc.  相似文献   

12.
13.
Smart characterization approaches apply the latest high‐resolution site characterization methods to find the contaminant mass flux, by integrating relative permeability mapping, classical hydrostratigraphy interpretation, and high‐density groundwater and saturated soil sampling. The key factor that makes Smart characterization different is the application of quantitative saturated soil sampling in less permeable slow advection and storage zones to diagnose plume maturity and understand its implications for remedy selection and performance. Because direct sensing tools like the membrane interface probe are capable of providing screening‐level assessments for hydrocarbons and chlorinated solvents in storage zones, but not 1,4‐dioxane, the recommended Smart approach involves application of specialized high‐capacity mobile laboratories or rapid turn‐around using fixed commercial labs. In addition to the benefit of rapidly characterizing sites, Smart characterization facilitates a flux‐based conceptual site model, which allows stakeholders to focus remedies on the mobile portion of the contaminant mass or, in effect, the mass that matters. Through systematic planning and implementation, predesign characterization can be completed to optimize source and plume remedy strategies, balancing investment in Smart characterization with reductions in total life‐cycle costs to ensure that an appropriate return on investigation is obtained.  © 2016 Wiley Periodicals, Inc.  相似文献   

14.
An aerobic fixed film biological treatment system has been successfully treating recovered groundwater/landfill leachate containing 1,4‐dioxane, tetrahydrofuran (THF), and other constituents since 2003. The most likely mode of 1,4‐dioxane biotransformation is via a cometabolic pathway in the presence of THF. Pilot studies conducted during the process development phase established a design basis process loading factor of 0.6 g 1,4‐dioxane and THF (as chemical oxygen demand [COD])/g total solids per day and proved the efficacy of the process. Full‐scale design includes the use of three parallel moving bed bioreactors with effluent recycle capability. Removal efficiencies in excess of 98 percent have been documented for 1,4‐dioxane. Evolving operational challenges are associated with recent trends in 1,4‐dioxane pretreatment discharge limitations in combination with ongoing process optimization and increased influent flow rate conditions associated with seasonal precipitation patterns. ©2016 Wiley Periodicals, Inc.  相似文献   

15.
1,4‐Dioxane entered the environment as a result of historic leaks and spills in the production area at an industrial facility in the southeastern coastal plain. The areal extent of the 1,4‐dioxane plume is several hundred acres and is largely contained on the site. Land use adjacent to the plant property is primarily undeveloped (wetlands or woods) or industrial, with a small area of mixed land use (commercial/residential) to the southwest and north. The surficial aquifer is a relatively simple hydrogeologic system with well‐defined boundaries and is comprised of a 50‐ to 70‐foot‐thick deposit of alluvial/fluvial sand and gravel that overlies an aquitard in excess of 100 feet thick. A groundwater flow model, developed and calibrated using field‐measured data, was used for the fate‐and‐transport modeling of 1,4‐dioxane. The flow‐and‐transport model, combined with the evaluation of other site geochemical data, was used to support the selection of monitored natural attenuation (MNA) as the proposed groundwater remedy for the site. Since the active sources of contamination have been removed and the modeling/field data demonstrated that the plume was stable and not expanding, the proposed MNA approach was accepted and approved by the regulatory agency for implementation in 2004. Subsequent accumulated data confirm that concentrations in the 1,4‐dioxane plume are declining as predicted by the fate‐and‐transport modeling. © 2008 Wiley Periodicals, Inc.  相似文献   

16.
A common industrial solvent additive is 1,4‐dioxane. Contamination of dissolved 1,4‐dioxane in groundwater has been found to be recalcitrant to removal by conventional, low‐cost remedial technologies. Only costly labor and energy‐intensive pump‐and‐treat remedial options have been shown to be effective remedies. However, the capital and extended operation and maintenance costs render pump‐and‐treat technologies economically unfeasible at many sites. Furthermore, pump‐and‐treat approaches at remediation sites have frequently been proven over time to merely achieve containment rather than site closure. A major manufacturer in North Carolina was faced with the challenge of cleaning up 1,4‐dioxane and volatile organic compound–impacted soil and groundwater at its site. Significant costs associated with the application of conventional approaches to treating 1,4‐dioxane in groundwater led to an alternative analysis of emerging technologies. As a result of the success of the Accelerated Remediation Technologies, LLC (ART) In‐Well Technology at other sites impacted with recalcitrant compounds such as methyl tertiarybutyl ether, and the demonstrated success of efficient mass removal, an ART pilot test was conducted. The ART Technology combines in situ air stripping, air sparging, soil vapor extraction, enhanced bioremediation/oxidation, and dynamic subsurface groundwater circulation. Monitoring results from the pilot test show that 1,4‐dioxane concentrations were reduced by up to 90 percent in monitoring wells within 90 days. The removal rate of chlorinated compounds from one ART well exceeded the removal achieved by the multipoint soil vapor extraction/air sparging system by more than 80 times. © 2005 Wiley Periodicals, Inc.  相似文献   

17.
18.
Pesticide contaminated wastewater resulting from leftover mixes, equipment cleaning, and container disposal are problems related to pesticide use. This study reports on the effectiveness of a soil‐based bioreactor (SBBR) to dissipate pesticides of differing concentrations and mixtures. In order to accomplish this study, soil columns were used to simulate the SBBR. A mixture of five herbicides and two insecticides from seven different chemical families (atrazine, dicamba, fluometuron, metolachlor, sulfentrazone, chlopyrifus, and λ‐cyhalothrin) were added to the SBBR‐simulated system as formulated products in three concentrations each: 0 part per million (control), 10 ppm, and 100 ppm. Additionally a 1,000 ppm treatment was added that included just the five herbicides to investigate how the system would respond to heavy loading. The system was run for 90 days with samples taken at day 4 (just prior to loading the columns), then at 30, 60, and 90 days. At low pesticide concentrations (10 and 100 ppm), there was significant dissipation (p < 0.05) of all pesticides in the columns except sulfentrazone. At 1,000 ppm, fluometuron, in addition to sulfentrazone, did not show significant dissipation. Overall, the system performed as expected and could be considered practical for use on farms or nurseries. ©2015 Wiley Periodicals, Inc.  相似文献   

19.
The effect of phenol concentration on phenol biodegradation at an industrial site in the south of Wales, United Kingdom, was investigated using standard Bio‐Sep® Bio‐Traps® and Bio‐Traps® coupled with stable isotope probing (SIP). Unlike many 13C‐amendments used in SIP studies (such as hydrocarbons) that physically and reversibly adsorb to the activated carbon component of the Bio‐Sep® beads, phenol is known to irreversibly chemisorb to activated carbon. Bio‐Traps® were deployed for 32 days in nine site groundwater monitoring wells representing a wide range of phenol concentrations. Bio‐Traps® amended with 13C‐phenol were deployed together with non‐amended Bio‐Traps® in three wells. Quantitative polymerase chain reaction (qPCR) analysis of Bio‐Traps® post‐deployment indicated an inhibitory effect of increasing phenol concentration on both total eubacteria and aerobic phenol‐utilizing bacteria as represented by the concentration of phenol hydroxylase gene. Despite the chemisorption of phenol to the Bio‐Sep® beads, activated carbon stable isotope analysis showed incorporation of 13C into biomass and dissolved inorganic carbon (DIC) in each SIP Bio‐Trap® indicating that chemisorbed amendments are bioavailable. However, there was a clear effect of phenol concentration on 13C incorporation in both biomass and DIC confirming phenol inhibition. These results suggest that physical reductions of the phenol concentrations in some areas of the plume will be required before biodegradation of phenol can proceed at a reasonable rate. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Enhanced anaerobic dechlorination is being conducted to remediate a 50‐acre groundwater area impacted with chlorinated volatile organic compounds (CVOCs). The plume, which is over 3,000 feet (ft) long, initially contained tetrachloroethene and breakdown products at concentrations of 2 to 3 milligrams per liter. The site's high groundwater flow velocity (greater than 1,000 ft per year) was incorporated into the design to help with amendment distribution. Bioaugmentation was conducted using a mixed culture containing Dehalococcoides ethenogenes. There is evidence that it has migrated to distances exceeding 600 ft. The major benefit of the high groundwater flow velocity is greater areal coverage by the remediation system, but the downside is the difficulty in delivering sufficient donor to create the required anaerobic conditions. Overall performance has been excellent with total CVOC reductions and conversion to ethene of 98 percent within a 25‐acre area downgradient of the treatment transect that has operated the longest. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号