首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the nature of contamination typically found at former MGP (manufactured gas plant) sites, excavation and thermal desorption of MGP wastes has proven to be an effective method for the remediation of MGP‐contaminated soil. The use of on‐site thermal desorption enables MGP sites to be quickly remediated at a low cost. Tar pits, holders, and other underground storage structures typically contain coal tar residuals and waste from former operations, and the areas around these structures are often significantly contaminated. Thus, excavation techniques, odor and vapor management, and material preparation for the treatment method are important factors to consider when developing a site remediation strategy. This article reviews typical excavation and handling methods associated with the remediation of former MGP sites and discusses the treatment of MGP wastes using on‐site thermal desorption technology. © 2001 John Wiley & Sons, Inc.  相似文献   

2.
This article discusses the appropriateness of using landfills as part of remediating hazardous chemical and Superfund sites, with particular emphasis on providing for true long‐term public health and environmental protection from the wastes and contaminated soils that are placed in the landfills. On‐site landfilling or capping of existing wastes is typically the least expensive approach for gaining some remediation of existing hazardous chemical/Superfund sites. The issues of the deficiencies in US EPA and state landfilling approaches discussed herein are also applicable to the landfilling of municipal and industrial solid “nonhazardous” wastes. These deficiencies were presented in part as “Problems with Landfills for Superfund Site Remediation” at the US EPA National Superfund Technical Assistance Grant Workshop held in Albuquerque, New Mexico, in February 2003. They are based on the author's experience in investigating the properties of landfill liners and the characteristics of today's landfills, relative to their ability to prevent groundwater pollution and to cause other environmental impacts. Discussed are issues related to both solid and hazardous waste landfills and approaches for improving the ability of landfills to contain wastes and monitor for leachate escape from the landfill for as long as the wastes in the landfill will be a threat. © 2004 Wiley Periodicals, Inc.  相似文献   

3.
The external (environmental and social) costs of landfilling (e.g. emissions to air, soil and water; and 'disamenities' such as odours and pests) are difficult to quantify in monetary terms, and are therefore not generally reflected in waste disposal charges or taken into account in decision making regarding waste management options. This results in a bias against alternatives such as recycling, which may be more expensive than landfilling from a purely financial perspective, but preferable from an environmental and social perspective. There is therefore a need to quantify external costs in monetary terms, so that different disposal options can be compared on the basis of their overall costs to society (financial plus external costs). This study attempts to estimate the external costs of landfilling in the City of Cape Town for different scenarios, using the benefits transfer method (for emissions) and the hedonic pricing method (for disamenities). Both methods (in particular the process of transferring and adjusting estimates from one study site to another) are described in detail, allowing the procedures to be replicated elsewhere. The results show that external costs are currently R111 (in South African Rands, or approximately US$16) per tonne of waste, although these could decline under a scenario in which energy is recovered, or in which the existing urban landfills are replaced with a new regional landfill.  相似文献   

4.
Sediment dredge disposal options were reviewed to improve cost‐effectiveness and environmental safety for dredging of coastal sediments at the Department of Fisheries and Oceans Small Craft Harbours (DFO‐SCH) program in Canada. Historically, contaminated dredge sediments exceeding federal guidelines were disposed of in nearby landfills. Recent federal regulatory changes in sediment quality guidelines adopted by provincial regulators in Canada has resulted in updates to guidelines for disposal of contaminated solids in landfills. Updates now require specific and general disposal options for contaminated dredge material destined for land‐based disposal, resulting in more expensive disposal in containment cells (if contaminated sediments exceed federal guidelines). However, as part of this study, a leachate testing method was applied to contaminated sediments to simulate migration of potential contaminants in groundwater. Using this approach, leachate quality was compared to federal freshwater criteria and drinking water quality guidelines for compliance with new regulations. Leachate testing performed on the highest sediment contaminant concentrations triggered less than 2 percent potable water exceedances, meaning that most dredge spoils could be disposed of in privately owned or provincially operated landfill sites, providing less expensive disposal options compared to containment cell disposal. Current dredge disposal practices were reviewed at 35 harbor sites across Nova Scotia and their limitations identified in a gap analysis. Improved site management was developed following this review and consultation with interested marine stakeholders. New disposal options and chemical analyses were proposed, along with improvements to cost efficiencies for management of dredged marine sediments in Atlantic Canada. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
An Erratum has been published for this article in Remediation 14(4) 2004, 141. The selection of remediation options for the management of unacceptable risks at contaminated sites is hindered by insufficient information on their performance under different site conditions. Therefore, there is a need to define “operating windows” for individual remediation options to summarize their performance under a variety of site conditions. The concept of the “operating window” has been applied as both a performance optimization tool and decision support tool in a number of different industries. Remediation‐option operating windows could be used as decision support tools during the “options appraisal” stage of the Model Procedures (CLR 11), proposed by the Environment Agency (EA) for England and Wales, to enhance the identification of “feasible remediation options” for “relevant pollutant linkages.” The development of remediation‐option operating windows involves: 1) the determination of relationships between site conditions (“critical variables”) and option performance parameters (e.g., contaminant degradation or removal rates) and 2) the identification of upper‐ and lower‐limit values (“operational limits”) for these variables that define the ranges of site conditions over which option performance is likely to be sufficient (the “operating window”) and insufficient (the “operating wall”) for managing risk. Some research has used case study data to determine relationships between critical variables and subsurface natural attenuation (NA) process rates. Despite the various challenges associated with the approach, these studies suggest that available case study data can be used to develop operating windows for monitored natural attenuation (MNA) and, indeed, other remediation options. It is envisaged that the development of remediation‐option operating windows will encourage the application of more innovative remediation options as opposed to excavation and disposal to landfill and/or on‐site containment, which remain the most commonly employed options in many countries. © 2004 Wiley Periodicals, Inc.  相似文献   

6.
In 1993 environmental consultants, working in concert with the State of Michigan, discovered groundwater contamination that threatened the drinking water supply of the town of Big Rapids. The contamination originated from leaking underground storage tanks and gasoline lines, which were removed. A pilot study indicated the contaminated area extended to 240′ x 180′ and affected soil as well as groundwater. A remediation plan was designed by and implemented by Continental Remediation Systems, Inc., a Natick, Massachusetts, firm. The remediation plan is ongoing and includes an interceptor trench to stop gasoline from flowing into the creek, as well as air sparging to vent and treat the contaminated soil. It is anticipated that the remediation project will take six months to complete. The chief advantage of on-site remediation is that it avoids the costs and liabilities associated with landfill disposal and no materials need leave the site.  相似文献   

7.
The capping of waste management units and contaminated soils is receiving increasing attention as a low-cost method for hazardous chemical site remediation. Capping is used to prevent further groundwater pollution by existing waste management units and contaminated soils through limiting the moisture that enters the wastes. In principle, for wastes located above the water table, the construction of an impermeable cap can prevent leaching of the wastes (leachate generation) and groundwater pollution. In practice, appropriately designed and constructed RCRA caps can provide for only short-term prevention of groundwater pollution. Alternative approaches are available for capping of wastes that can be effective in preventing moisture from entering the wastes and concomitant groundwater pollution. These approaches recognize the inability of the typical RCRA cap to keep wastes dry for as long as waste constituents will be a threat and, most importantly, provide the necessary funds to effectively address all plausible worst-case scenario failures that could occur at a capped waste management unit or contaminated soil area.  相似文献   

8.
A comprehensive approach for the evaluation of the economic feasibility of landfill mining (LFM) should take into account not only the direct costs and revenues for the private investor, but also the social benefits or costs (generally called externalities), in such a way that projects generating major social benefits (and no significant private revenues) are not overlooked.With a view to contributing to the development of a common framework for the evaluation of LFM projects, this paper presents the results of a case study where the issue of the assessment of social benefits from a LFM project is addressed. In particular, the Contingent Valuation Method is applied for the monetary assessment of the community-perceived benefits from the remediation of an old uncontrolled waste deposit by means of LFM and the conversion of the area into a park.Based on the results of a survey carried out on a random sample of people living near the old landfill, the economic values of the individual willingness to pay (WTP) for LFM and the subsequent creation of a public park were calculated and the correlations with the relevant variables (distance from the landfill site, age, income, sex, education level) assessed. The results were then suitably extended and the monetary value of the welfare increase of the whole population resident in the area and potentially affected both by LFM and the creation of the park was calculated.  相似文献   

9.
In response to new coal combustion residuals (CCR) disposal regulations, many coal‐fired utilities have closed existing unlined surface impoundments (SIs) that were traditionally used for disposal of CCR. The two primary closure options are closure‐in‐place (CIP), which involves dewatering and capping, and closure‐by‐removal (CBR), which includes excavation, transportation, and disposal of the CCR into a lined landfill. This article provides a methodology and a case study of how green and sustainable remediation concepts, including accounting for the life cycle environmental footprints and the physical risks to workers and community members, can be incorporated into the closure decision‐making process. The environmental impacts, occupational risks, and traffic‐related fatalities and injuries to workers and community members were calculated and compared for closure alternatives at a hypothetical site. The results demonstrated that the adverse impacts of the CBR option were significantly greater than those of the CIP option with respect to the analyzed impact pathways.  相似文献   

10.
The potential for aeration of MSW landfills to accelerate completion   总被引:4,自引:0,他引:4  
Landfilling is a popular waste disposal method, but, as it is practised currently, it is fundamentally unsustainable. The low short-term financial costs belie the potential long-term environmental costs, and traditional landfill sites require long-term management in order to mitigate any possible environmental damage. Old landfill sites might require aftercare for decades or even centuries, and in some cases remediation may be necessary. Biological stabilisation of a landfill is the key issue; completion criteria provide a yardstick by which the success of any new technology may be measured. In order for a site to achieve completion it must pose no risk to human health or the environment, meaning that attenuation of any emissions from the site must occur within the local environment without causing harm. Remediation of old landfill sites by aerating the waste has been undertaken in Germany, the United States, Italy and The Netherlands, with considerable success. At a pilot scale, aeration has also been used in newly emplaced waste to accelerate stabilisation. This paper reviews the use of aerobic landfill worldwide, and assesses the ways in which the use of aerobic landfill techniques can decrease the risks associated with current landfill practices, making landfill a more sustainable waste disposal option. It focuses on assessing ways to utilise aeration to enhance stabilisation. The results demonstrated that aeration of old landfill sites may be an efficient and cost-effective method of remediation and allow the date of completion to be brought forward by decades. Similarly, aeration of newly emplaced waste can be effective in enhancing degradation, assisting with completion and reducing environmental risks. However, further research is required to establish what procedure for adding air to a landfill would be most suitable for the UK and to investigate new risks that may arise, such as the possible emission of non-methane organic compounds.  相似文献   

11.
Until recent years, waste oil and oil-contaminated waters commonly ended up in landfills. At some dump sites, ponds of oily liquids and leachate were formed. To remediate such ponds, an interdisciplinary approach is now required, keeping costs at an affordable level, particularly in countries with changing economies. From 1974 to 1993, liquid oily wastes taken to the Laguja landfill, in Estonia, were disposed of in a pond with a surface area of 9800 m2. It was estimated that the pond contained 4500-6000 m3 of oily water and 3500 m3 of oil-containing bottom sediments. This study aimed at developing an environmentally sound and cost-effective method for remediation of the oily liquids, leachate and contaminated underlying sediment material, to meet the existing legal demands. It was concluded that treatment of contaminated water is well established and the procedures carried out to meet the regulatory demands achieved satisfactory results. However, regarding treatment of sediments it was concluded that legal and technological aspects, as well as monitoring procedures are not fully established and are usually underestimated. Laboratory investigations can provide valuable information in decision-making, and contribute to effective full-scale remediation planning.  相似文献   

12.
This paper examines public preferences on siting landfills using a choice experiment. A choice experiment is a method that elicits public preferences directly through questionnaires. This paper focuses on possible negative effects of a hypothetical landfill siting on residents who are assumed to live around the landfill. The results of this analysis clearly show that the residents evaluate accepting waste originating from outside their community quite negatively, especially industrial waste originating from the Tokyo Metropolitan Area. Large external costs also are seen for siting landfills near areas that are sources of drinking water. In addition, the results show that the NIMBY syndrome of the residents weakens as the hypothetical landfill site is farther away. Considering three hypothetical siting plans, external costs based on public preferences are estimated. The social costs, which are the sum of the private costs and external costs, are then calculated. The results of the case study indicate that the option with the lowest private cost it is not always the option with the lowest social cost.  相似文献   

13.
The most common means for disposing of municipal solid waste is burial in a sanitary landfill. However, many landfill owners significantly underestimate the total cost of landfill disposal by considering only land and operating costs, ignoring external physical and social costs associated with landfills. This paper proposes an approach to estimating (in monetary terms) the external costs arising from the development and operation of a landfill. All cost information is based on typical U.S. landfill cost structures. The approach is illustrated by applying it to a case study of a proposed landfill in Durham, North Carolina (U.S.A.). This case study demonstrates that the method can be applied easily and yields reasonable results.  相似文献   

14.
In Helsinki, Finland, new guidelines have been adopted for the management of wastes from healthcare facilities. The purpose has been to rationalize waste management, reducing the amount of waste needing special treatment and lowering costs, while at the same time maintaining occupational safety and preventing environmental hazards. The changes are mainly due to the new definition of infectious waste, based on practical assessment of the possibility of spread of infection via the wastes. As a result, it has been possible to omit one chain of waste handling which has led to simpler practices and economic benefits. Sanitary landfill has been accepted for disposal of clinical waste, except for the biological waste to be incinerated for ethical reasons and infectious waste contaminated by class 4 viruses,Yersinia pestisorBacillus anthracis. Diseases caused by these micro-organisms are not a practical problem in Finland.  相似文献   

15.
This article discusses the use of solidification/stabilization (S/S) to treat soils contaminated with organic and inorganic chemicals at wood preserving sites. Solidification is defined for this article as making a material into a freestanding solid. Stabilization is defined as making the contaminants of concern nonmobile as determined from a leaching test. S/S then combines both properties. For more information on S/S in general the reader should refer to other publications (Connors, J.R. [1990]). Chemical fixation and solidification of hazardous wastes. New York: Van Nostrand Reinhold; US Environmental Protection Agency. [1993a]. Engineering bulletin solidification/stabilization of organics and inorganics (EPA/540/S‐92/015); Wiles, C.C. [1989]. Solidification and stabilization technology. In H.M. Freeman [Ed.], Standard handbook of hazardous waste treatment and disposal. New York: McGraw Hill) as this article addresses only wood preserving sites and assumes basic knowledge of S/S processes. For a more general discussion of wood preserving sites and some other remedial options, the reader may wish to refer to a previous EPA publication (US Environmental Protection Agency. [1992a]. Contaminants and remedial options at wood preserving sites [EPA/600/R‐92/182]). This article includes data from the successful remediation of a site with mixed organic/inorganic contaminants, remediation of a site with organic contaminants, and detailed treatability study results from four sites for which successful formulations were developed. Included are pre‐ and post‐treatment soil characterization data, site vaines. ileizdot‐ names (in some cases), treatment formulas used (generic aridproprietary), costs, recommendations, and citatioiis to inore detailed refer‐ en ces. The data presen ted iiidica te that dioxins, pentachlorophepi 01 (PCP), creosote, polycyclic aromatic hydrocarbom (PAHsI, and metals can be treated at moderate cost by the use of S/S techuologp.  相似文献   

16.
Decisions made during the course of investigating and remediating a contaminated site, as well as the technology used, are most often driven exclusively by physical, technical, and health-based concerns. Additionally, in both determining and managing the potential risks posed by a remediation project, the focus tends to be placed primarily on health risks. However, a contaminated site and its remediation are neither static over time nor do they exist in a vacuum. Other elements of risk associated with the site and remedial activities include continuing regulatory oversight and compliance, public and agency relations, remedial technology costs, current and future land-use issues, and future technological/regulatory risks. Agencies, consultants, contractors, and facility management must consider these other non-health-related elements of risk. Additionally, efforts made to communicate a project's decisions, technologies, and risks are often made in a defensive or reactive posture, resulting in ineffective communication and an alienated, angry, or distrustful public. Proactive risk communication, as well as public involvement in the remedial process, are critical to the success of any remedial activity.  相似文献   

17.
Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14+/-1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85+/-0.19 million t representing 37.22+/-6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.  相似文献   

18.
The U.S. Environmental Protection Agency (EPA) has proposed regulations that would require corrective action (e.g., soil excavation and groundwater removal and treatment) at municipal solid waste landfills (MSWLFs) and hazardous waste treatment, storage, and disposal facilities (TSDFs). This paper presents an overview of the proposed corrective action regulations, and discusses their relationship to proposed or existing closure and post-closure care regulations. The paper then presents estimated corrective action cost curves for various MSWLF scenarios defined by landfill area, average waste thickness, and the presence or absence of a clay liner. The paper finally illustrates the economic benefits of sound closure and postclosure care by comparing estimated costs of corrective action to estimated costs of closure and postclosure care at MSWLFs.  相似文献   

19.
20.
Thousands of known hazardous waste sites across the country require remediation, with thousands more yet to be discovered, at estimated cleanup costs of billions of dollars over the next few decades. With this enormous financial burden placed on all members of society through increased prices, taxes, and lost investment opportunities, policy makers face the difficult prospect of defining cleanup standards that meet the goals of protecting human health and the environment and achieving remediation in the most cost-effective manner. Using a statistical methodology to investigate factors influencing the cost of RCRA corrective action, this article examines site characteristics that significantly affect cleanup costs and explains differences in costs among EPA's four proposed Subpart S corrective action options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号