共查询到20条相似文献,搜索用时 0 毫秒
1.
Kinetic studies on the dechlorination of 1,1-dichloro-2,2 bis (4,-chlorophenyl) ethane (DDD) and 1,1,dichloro-2,2 bis (4,-chlorophenyl) ethylene (DDE) in 0.05% biosurfactant revealed that the reaction follows second-order kinetics. The rate of reaction was dependent on the presence of acid, initial concentrations of the target compound, and zerovalent magnesium/tetravalent palladium. Gas chromatography-mass spectrometry analyses of DDE dechlorination revealed the formation of a completely dechlorinated hydrocarbon skeleton, with diphenylethane as the end product, thereby implying the removal of all four chlorine atoms of DDE. In the case of DDD, we identified two partially dechlorinated intermediates [namely, 1,1-dichloro-2, 2 bis (phenyl) ethane and 1, chloro-2, 2 bis (phenyl) ethane] and diphenylethane as the end product. On the basis of products formed from DDD dehalogenation, we propose the removal of aryl chlorine atoms as a first step. Our investigation reveals that biosurfactant may be an attractive solubilizing agent for DDT and its residues. The magnesium/palladium system is a promising option because of its high reactivity and ability to achieve complete dechlorination of DDE and DDD. 相似文献
2.
Supported Pd/Sn bimetallic nanoparticles for reductive dechlorination of aqueous trichloroethylene 总被引:1,自引:0,他引:1
A Pd/Sn bimetallic nanoparticles resin (nano-Pd/Sn/resin) was successfully synthesized for reductive transformation of aqueous trichloroethylene (TCE). The physicochemical properties of the prepared resin were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, N(2) isothermal sorption at and X-ray photospectroscopy. The surface-area-normalized rate constants (k(SA)) of Sn particles in the nanoscale range (50-100 nm) were 4.5 times larger than the k(SA) for powdered Sn (0.04 mm). After depositing 1 wt% Pd onto nano-Sn surface, k(SA) was further enhanced by about a factor of 2. Groundwater constituents such as sulfide nitrate and dissolved oxygen had significant negative effects on the rate of TCE degradation by the nano-Pd/Sn/resin. A wet-chemical method regeneration method was observed to effectively restore the reactivity of the poisoned nano-Pd/Sn/resin after dipping in sulfide solution for 2d. In all cases, less than 0.5% of the degraded TCE appeared as chlorinated byproducts including the three dichloroethene isomers. The nano-Pd/Sn/resin technique performs well in transforming TCE into nontoxic hydrocarbons, as compared with other published methods. 相似文献
3.
Sun Zhirong Ma Xiaoyue Hu Xiang 《Environmental science and pollution research international》2017,24(16):14355-14364
Environmental Science and Pollution Research - Palladium/carbon nanotubes-nafion film-modified titanium mesh electrode (Pd/CNTs-nafion film/Ti electrode) was prepared and used for catalytic... 相似文献
4.
5.
四氯化碳的生产和使用,给人类带来了较大危害。为此,采用纳米铁粉这一新方法对其进行脱氯处理。试验以纳米级铁粉对四氯化碳的脱氯率为考察指标,选用L25(5^6)正交试验方案,考察了降解介质的初始pH值、纳米铁粉的质量、降解温度、摇床转速和脱氯时间5个影响因素。结果表明,pH值这一因素有极显著影响;在得出的纳米铁粉对四氯化碳脱氯的最佳工艺条件下,获得了99.5%的脱氯率,为有机氯化物脱氯开辟了一条新途径。 相似文献
6.
A Mg0/Pd(+4) bimetallic system was evaluated to dechlorinate endosulfan and lindane in the aqueous phase. Studies were conducted with endosulfan and lindane separately, with or without acid in a 1:1 (v/v) water:acetone phase. In the absence of any acid, higher degradation of endosulfan and lindane was observed using Mg0/Pd(+4) doses of 10/0.5 and 4/0.1 mg/mL, respectively. Acetone plays an important role in facilitating the dechlorination reaction by increasing the solubilities of pesticides. Dechlorination kinetics for endosulfan and lindane (30 and 50 mg/L [30 and 50 ppm] concentration of each pesticide) were conducted with varying Mg0/Pd(+4) doses, and the time-course profiles were well-fitted into exponential curves. The optimum observed rate constants (k(obs)) for endosulfan and lindane were obtained with Mg0/Pd(+4) doses of 5/0.5 and 4/0.1 mg/mL, respectively. Gas chromatography-mass spectrometry analyses revealed that endosulfan and lindane were dechlorinated completely into their hydrocarbon skeletons-Bicyclo [2,2,1] hepta 2-5 diene and benzene, respectively. 相似文献
7.
微米Cu/Fe对污染土壤洗脱液中有机氯农药的降解 总被引:1,自引:0,他引:1
以表面活性剂TritonX-100(TX-100)为洗脱剂,某有机氯农药(organochlorinepesticides,OCPs)污染场地土壤为对象,七氯、氯丹和灭蚁灵为目标污染物,研究微米Cu/Fe双金属对污染土壤洗脱液中OCPs的降解效果。考察了洗脱液中OCPs初始浓度、洗脱液pH值、微米零价铁加入量和cu负载量对Cu/Fe去除OCPs效果的影响。结果表明,微米Cu/Fe可以有效的去除土壤洗脱液中目标污染物。当微米零价铁加入量为1.0g(25g/L),cu负载量为1.0%,洗脱液pH值为6.89时,Cu/Fe对2号土壤洗脱液中七氯、γ-氯丹、α-氯丹和灭蚁灵的去除效果最好,去除率分别为100.0%、99.3%、80.8%和71.1%。洗脱液中OCPs初始浓度越低,微米零价铁加入量越大,Cu/Fe对OCPs去除率越高;偏酸性条件有利于Cu/Fe对γ-氯丹和灭蚁灵的去除,而α-氯丹在中性条件下去除效果最好;1号土壤和2号土壤洗脱液的最佳铜负载量分别为2.O%和1.0%。 相似文献
8.
Bimetallic iron-aluminum (Fe/Al) particles were synthesized and tested for their reactivity toward carbon tetrachloride using batch reactors and a flow-through column at near neutral pH. Preparation of bimetallic Fe/Al particles was conducted under acidic conditions under which iron was readily deposited onto the aluminum surface. The SEM image showed clusters of iron on the aluminum surface at the measured Fe:Al molar ratio of about 2:3. Results showed that the presence of zero-valent aluminum successfully prevented the formation of a passive layer at the iron surface and maintained the reactivity of iron. The dechlorination of carbon tetrachloride by bimetallic Fe/Al particles produced chloroform (9%), dichloromethane (17%) and methane (38%). Kinetic analysis suggests that bimetallic Fe/Al particles increased the reactivity toward carbon tetrachloride degradation by a factor of 10 compared to zero-valent iron and possessed a comparable reactivity with nano-sized Fe. The effectiveness of bimetallic Fe/Al particles was further confirmed by the continuous flow column study from which an ageing of bimetallic particles was also observed. 相似文献
9.
A reaction mixture containing DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane), methylene green (as the photosensitizer), and triethylamine (as the electron donor) in acetonitrile:water (1:1) was irradiated by an ordinary 150-W GE-Miser spotlight to facilitate visible-light photosensitized DDT dehalogenation. The intermediates and reaction products were identified by GC/MS (gas chromatography/mass spectrometer) and NMR (nuclear magnetic resonance). The photosensitized dehalogenation method partially degraded DDT via an electron transfer relay mechanism. Results indicate that DDT lost about three chlorines after a total of 19 days of irradiation. Aliphatic chlorines were found to be removed easier than aromatic chlorines. Various types of reductants were compared for electron donation efficiency, and photosensitizer concentration was optimized for our reaction system. In most cases, clean and simple dechlorinated products were observed. The proposed photosensitized reduction was coexisted with a thermal elimination effect for the first chlorine removal of DDT, and the photosensitized electron transfer reduction was shown to be the dominating mechanism responsible for further dechlorination after the initial stage. A sequential dechlorination pathway was proposed, with each successive dehalogenation, the reaction proceeds more slowly. The results have shown the feasibility of utilizing visible light, nontoxic dyes and electron donors to render a toxic compound less toxic and to enhance the natural carbon regeneration rates. 相似文献
10.
Catalytic amination and dechlorination of para-nitrochlorobenzene (p-NCB) in water over palladium-iron bimetallic catalyst 总被引:3,自引:0,他引:3
Chemical treatment of para-nitrochlorobenzene (p-NCB) by palladium/iron (Pd/Fe) bimetallic particles represents one of the latest innovative technologies for the remediation of contaminated soil and groundwater. The amination and dechlorination reaction is believed to take place predominantly on the surface site of the Pd/Fe catalysts. The p-NCB was first transformed to p-chloroaniline (p-CAN) then quickly reduced to aniline. 100% of p-NCB was removed in 30 min when bimetallic Pd/Fe particles with 0.03% Pd at the Pd/Fe mass concentration of 3g 75 ml(-1) were used. The p-NCB removal efficiency and the subsequent dechlorination rate increased with the increase of bulk loading of palladium and Pd/Fe. As expected, p-NCB removal efficiency increased with temperature as well. In particular, the removal efficiency of p-NCB was measured to be 67%, 79%, 80%, 90% and 100% for reaction temperature 20, 25, 30, 35 and 40 degrees C, respectively. Our results show that no other intermediates were generated besides Cl(-), p-CAN and aniline during the catalytic amination and dechlorination of p-NCB. 相似文献
11.
12.
Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles 总被引:2,自引:0,他引:2
Nanoscale zero-valent iron (NZVI) particles are promising materials for the in-situ remediation of a wide variety of source zone contaminants. This study presents the results of a systematic investigation of the stability of bimetallic FePd nanoparticle suspensions in water and their capability to degrade trichloroethylene (TCE) synthesized in the presence of various stabilizers (i.e., carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), and guar gum). Results indicate a dramatic improvement in FePd suspension stability when the stabilizer is present in the matrix during the nanoparticle synthesis step. Stability enhancement is controlled by iron nanoparticle/stabilizer electrostatic and steric interactions, which are a function of the molecular structure of the stabilizer. Stabilization mechanisms differed for each stabilizer with CMC and guar gum exhibiting the best nanoparticle suspension stability improvement. Results suggest that the complexation of iron precursors with the stabilizer, during synthesis, plays a key role in nZVI stability improvement. In case of guar gum, gelation during synthesis significantly increased suspension viscosity, enhancing suspension stability. The capability of these materials to degrade TCE was also investigated. Results demonstrated that when stabilizers were present in the matrix dechlorination rates increased significantly. FePd nanoparticles in CMC had the highest observed rate constant; however the highest surface area-normalized rate constant was obtained from FePd stabilized in PVP360K. Results from this study can be used to aid in the selection of appropriate iron nanoparticle stabilizers. Stabilizer selection should be assessed on a case by case basis as no stabilizer will meet the needs of all in-situ remediation applications. 相似文献
13.
A new approach for the removal of the pesticide lindane (gamma-hexachlorocyclohexane or gamma-HCH) makes use of catalytic reduction of HCH to benzene over a metal catalyst, namely Pd(0). Since specific surface area plays an important role in reactivity of catalysts, this study investigated the use of bioPd(0), i.e. nano-scale Pd(0) particles precipitated on the biomass of Shewanella oneidensis, for the removal of lindane. It was demonstrated that bioPd(0) has catalytic activity towards dechlorination of gamma-HCH, with the addition of formate as electron donor, and that dechlorination with bioPd(0) was more efficient than with commercial powdered Pd(0). The biodegradable compound benzene was formed as reaction product and other HCH isomers could also be dechlorinated. Subsequently bioPd(0) was implemented in a membrane reactor technology for the treatment of gamma-HCH polluted water. In a fed-batch process configuration with formate as electron donor, a removal percentage of 98% of gamma-HCH saturated water (10 mg l(-1)) was achieved within 24h. The measured chloride mass balance approached the theoretical value. The results of this work showed that a complete, efficient and fast removal of lindane was achieved by biocatalysis with bioPd(0). 相似文献
14.
Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide 总被引:2,自引:0,他引:2
F.B. Li X.M. Li S.G. Zhou F. Cao D.Y. Huang T.X. Liu 《Environmental pollution (Barking, Essex : 1987)》2010,158(5):1733-5252
The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. 相似文献
15.
Fagerlund F Illangasekare TH Phenrat T Kim HJ Lowry GV 《Journal of contaminant hydrology》2012,131(1-4):9-28
While the capability of nanoscale zero-valent iron (NZVI) to dechlorinate organic compounds in aqueous solutions has been demonstrated, the ability of NZVI to remove dense non-aqueous phase liquid (DNAPL) from source zones under flow-through conditions similar to a field scale application has not yet been thoroughly investigated. To gain insight on simultaneous DNAPL dissolution and NZVI-mediated dechlorination reactions after direct placement of NZVI into a DNAPL source zone, a combined experimental and modeling study was performed. First, a DNAPL tetrachloroethene (PCE) source zone with emplaced NZVI was built inside a small custom-made flow cell and the effluent PCE and dechlorination byproducts were monitored over time. Second, a model for rate-limited DNAPL dissolution and NZVI-mediated dechlorination of PCE to its three main reaction byproducts with a possibility for partitioning of these byproducts back into the DNAPL was formulated. The coupled processes occurring in the flow cell were simulated and analyzed using a detailed three-dimensional numerical model. It was found that subsurface emplacement of NZVI did not markedly accelerate DNAPL dissolution or the DNAPL mass-depletion rate, when NZVI at a particle concentration of 10g/L was directly emplaced in the DNAPL source zone. To react with NZVI the DNAPL PCE must first dissolve into the groundwater and the rate of dissolution controls the longevity of the DNAPL source. The modeling study further indicated that faster reacting particles would decrease aqueous contaminant concentrations but there is a limit to how much the mass removal rate can be increased by increasing the dechlorination reaction rate. To ensure reduction of aqueous contaminant concentrations, remediation of DNAPL contaminants with NZVI should include emplacement in a capture zone down-gradient of the DNAPL source. 相似文献
16.
Cyclodiene pesticides: aldrin, isodrin, dieldrin and endrin were dechlorinated by methanogenic granular sludge in spiked batch tests. Initial pesticides concentration was 7 or 9 mgl(-1). Two monodechlorinated analogues were formed during the conversions of aldrin and isodrin. Dieldrin was transformed into two monodechlorinated products as well as into aldrin and two monodechlorinated derivatives of aldrin. In respect of endrin three monodechlorinated and three didechlorinated products were found. The dechlorination of endrin was the most rapid, and was almost complete within 28 days. The dechlorinations of aldrin, isodrin and dieldrin were much slower: over a period of 3 months only 59%, 70% and 88% was transformed, respectively. The amounts of released chloride corresponded 0.54 +/- 0.23, 1.05 +/- 0.25, 1.10 +/- 0.12 of theoretical value for suggested reactions, for aldrin, isodrin and dieldrin respectively. For endrin it was much higher. These transformations did not occur in control samples containing autoclaved granules or in control blank samples without sludge. However, in aldrin spiked blanks, a conversion into a six-chlorinated analogue was found. 相似文献
17.
Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al 总被引:10,自引:0,他引:10
A low-cost and high effective copper/aluminum (Cu/Al) bimetal has been developed for treatments of halogenated methanes, including dichloromethane, in near neutral and high pH aqueous systems. Bimetallic Cu/Al was prepared by a simple two-step synthetic method where Cu was deposited onto the Al surface. The presence of Cu on Al significantly enhanced rates of degradation of halogenated methanes and reduced toxic halogenated intermediates. The stability of Cu/Al was preliminarily studied by a multi-spiking batch experiment where complete degradation of carbon tetrachloride was achieved for seven times although the Cu/Al aging was found. Roles of Cu may involve protecting Al against an undesirable oxidation with water, enhancing reaction rates through the galvanic corrosion, and increasing the selectivity to a benign compound (i.e., methane). Kinetic analyses indicated that the activity of bimetallic Cu/Al was comparable to that of iron-based bimetals (e.g., palladized iron) and zero-valent metals. Bimetallic Cu/Al could be a promising reactive reagent for remediation of halogenated solvents-contaminated groundwater associated with high pH problems. 相似文献
18.
19.
Nikolay Kluyev Andrei Cheleptchikov Efim Brodsky Vladimir Soyfer Vladimir Zhilnikov 《Chemosphere》2002,46(9-10)
A new method for reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs) and remediation of contaminated soils is described that uses zerovalent iron as the dechlorination agent and subcritical water as reaction medium and extractive solvent. It is found that the zerovalent iron can be applied for stepwise dechlorination of octachlorinated dibenzo-p-dioxin (OCDD) on various matrixes in subcritical water. By using iron powder as matrix higher chlorinated congeners were practically completely reduced to less than tetra-substituted homologues. A significant part of residual OCDD, when it was spiked in to soils, and formed less chlorinated congeners are extracted with water in the given conditions. The solubility of OCDD was increased by a 4–6 orders over its solubility at ambient conditions. The new method of contentious-flow extraction is described. 相似文献
20.
Reductive dechlorination rate constants for five chlorobenzenes in the presence of Pd/Fe as catalyst were determined experimentally. Linear free energy relationships (LFER) for the dechlorination rate constants of five chlorobenzenes and three chlorophenols were developed by partial least squares (PLS) regression based on quantum chemical parameters computed by PM3 Hamiltonian. The optimal LFER model obtained iswhere k stands for the dechlorination rate constants, ΔHf is the standard heat of formation, and ELUMO is the energy of the lowest unoccupied molecular orbital. The Q2cum value of the model is 0.879, indicating good robustness and predictive power of the model. 相似文献
logk=−1.63+1.46×10−3ΔHf−7.69×10−1ELUMO