首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
饮用水消毒副产物研究状况   总被引:4,自引:1,他引:3  
本文介绍了饮用水中消毒副产物的研究状况。其中重点介绍了饮用水的消毒方式及四类消毒副产物的产生、浓度、存在形态及影响因素等。简单介绍了饮用水中消毒副产物的采集、前处理方法及污染控制对策等  相似文献   

2.
Application of chlorination for the disinfection of drinking water results in the formation of a wide range of organic compounds, called disinfection by-products (DBPs), which occur due to the reaction of chlorine with natural organic materials. The occurrence of DBPs was studied in samples from four drinking-water treatment plants (WTPs) and from the distribution network of Athens, Greece. Twenty-four compounds, which belong to different categories of DBPs, were monitored, including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), haloketones (HAKs), chloral hydrate (CH) and chloropicrin (CP). Sampling was performed monthly for a period of two years, from three different points at each WTP and from eight points atthe distribution network. Samples were analyzed by GC-ECD methods, which included pretreatment with liquid-liquid extraction for volatile DBPs and acidic methanol esterification for HAAs. The results of the analyses have shown the presence of disinfection by-products belonging to all categories studied in all water samples collected after prechlorination. The major categories of DBPs detected were THMs and HAAs, while the other volatile DBPs occurred at lower concentrations. The concentrations of DBPs did not in any case exceed the maximum contaminant levels (MCL) set by USEPA and WHO. However, monitoring these compounds needs to be continued, because their levels could increase due to changes in the quality of water entering the water treatment plants. Reduction of the concentrations of DBPs could be achieved by optimization of the chlorination conditions, taking into account the effect of time. Moreover, research on alternative disinfection methods (e.g. ozone, chlorine dioxide, chloramines) and their by-products should be conducted to evaluate their applicability in the case of the drinking water of Greece.  相似文献   

3.
4.
Kristiana I  Joll C  Heitz A 《Chemosphere》2011,83(5):661-667
The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80-95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system. The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide.  相似文献   

5.
氯胺消毒对三卤甲烷类消毒副产物的控制研究   总被引:5,自引:0,他引:5  
在氯消毒研究的基础上,研究氯胺对消毒副产物的控制,将氯与氨氮的比值降至5,能够使单独氯消毒所生成消毒副产物减少89%,二溴一氯甲烷也不再检出;消毒副产物的生成量与氯胺的投加量呈很好的线性关系;接触时间对消毒副产物的生成量影响很小,24 h增加缓慢;pH升高至8消毒副产物的总量比pH为7时减少82.3%,一溴二氯甲烷不再检出;氯胺代替氯消毒能够很好地控制溴代消毒副产物种类和总量.  相似文献   

6.
在氯消毒研究的基础上,研究氯胺对消毒副产物的控制,将氯与氨氮的比值降至5,能够使单独氯消毒所生成消毒副产物减少89%,二溴一氯甲烷也不再检出;消毒副产物的生成量与氯胺的投加量呈很好的线性关系;接触时间对消毒副产物的生成量影响很小,24 h增加缓慢;pH升高至8消毒副产物的总量比pH为7时减少82.3%,一溴二氯甲烷不再检出;氯胺代替氯消毒能够很好地控制溴代消毒副产物种类和总量.  相似文献   

7.
Toor R  Mohseni M 《Chemosphere》2007,66(11):2087-2095
The presence of disinfection byproducts (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs) in drinking water is of great concern due to their adverse effects on human health. Emerging regulation limiting the concentration of DBPs in drinking water has increased demands for technologies and processes which reduce the formation of DBPs in drinking water. In this study, UV-H2O2 based advance oxidation process (AOP) was used to treat raw surface water. Experiments were conducted using low pressure mercury vapor UV lamps in collimated beam and flow-through annular photoreactors. The effect of UV fluence (0–3500 mJ cm−2) and hydrogen peroxide concentration (0–23 mg l−1) in reducing the concentration of THMs and HAAs was examined. The UV-H2O2 AOP was then coupled with a downstream biological activated carbon (BAC) treatment to assess the synergetic benefits of combining the two treatments. It was observed that UV-H2O2 AOP was only effective at reducing DBPs at UV fluences of more than 1000 mJ cm−2and initial H2O2 concentrations of about or greater than 23 mg l−1. However, the combined AOP–BAC treatment showed significant reductions of 43%, 52%, and 59% relative to untreated raw water for DBPs, TOC, and UV254, respectively.  相似文献   

8.
Disinfection by-products in Finnish drinking waters   总被引:11,自引:0,他引:11  
Disinfection by-products (DBPs) were measured in plant effluents of 35 Finnish waterworks, which utilized different treatment processes and raw water sources. DBPs were measured also from the distribution systems of three waterworks. Di- and trichloroacetic acids, and chloroform were the major DBPs found in treated water samples. The concentration of six haloacetic acids (HAA6) exceeded the concentrations of trihalomethanes (THMs). Chlorinated drinking waters (DWs) originating from surface waters contained the highest concentration of HAA6 and THMs: 108 and 26 microg/l, respectively. The lowest concentrations of DBPs were measured from ozonated and/or activated carbon filtrated and chloraminated DWs. Higher concentrations of HAA6, THMs, and adsorbable organic halogens were measured in summer compared to winter. The levels of chlorinated acetic acids, chloroform, and bromodichloromethane correlated positively with mutagenicity. Past mutagenicity levels of DWs were examined. A major reduction in the use of prechlorination, increased use of chloramine disinfection, and better removal of organic carbon were the most important reasons for the 69% decrease in mutagenicity from 1985 to 1994.  相似文献   

9.
Lee JY  Hozalski RM  Arnold WA 《Chemosphere》2007,66(11):2127-2135
Iron metal (Fe(0)) is a potent reductant capable of reducing a wide variety of halogenated organic compounds including disinfection byproducts (DBPs). These reduction reactions may play a role in DBP fate in iron water mains and potentially could be exploited to remove DBPs from drinking water or wastewater in a packed-bed configuration. Oxidants (i.e., dissolved oxygen (DO) and chlorine) present in the water, however, may decrease the DBP degradation rate by competing for reactive sites and rapidly aging or corroding the iron surface. Thus, batch experiments were performed to investigate the effect of DO on the degradation rates of selected DBPs by Fe(0). Experiments were performed under anaerobic conditions, in initially oxygen saturated buffer without DO control, and under controlled DO (approximately 4.0 or 8.0 mg l−1) conditions. The effect of short-term (25–105 min) iron aging in DO-containing buffer on DBP degradation rate also was investigated in separate experiments. For fresh Fe(0), the degradation rates of trichloronitromethane (TCNM) and trichloroacetonitrile (TCAN) in initially oxygen saturated buffer were similar to their respective rates under anaerobic conditions. The degradation rate of 1,1,1-trichloropropanone (1,1,1-TCP), however, decreased significantly in the presence of DO and the effect was proportional to DO concentration in the controlled DO experiments. For a DO concentration of 4 mg l−1, the degradation rate of the three DBPs was greater for longer aging times as compared to their respective rates after 25 min, suggesting the formation of a mineral phase that increased reactivity. For a DO concentration of 8 mg l−1, the effects of increasing aging time were mixed. TCNM degradation rates were stable for all aging times and comparable to that under anaerobic conditions. The TCAN and 1,1,1-TCP degradation rates, however, tended to decrease with increasing aging time. These results suggest that the reduction of highly reactive DBPs by Fe(0) will not be affected by the presence of DO but that the reaction rates will be slowed by DO for DBPs with slower degradation kinetics.  相似文献   

10.
选择有代表性的芳香类有机物,在含有腐殖酸的水溶液中进行氯化试验.测定三卤甲烷和卤乙酸的生成特性.并分析有机物的化学结构对生成消毒副产物的影响.结果表明.各受试物氯化生成消毒副产物的活性和反应速率排序为间苯二酚>对苯二酚>邻苯二酚>苯酚>苯胺>苯甲酸>硝基苯;芳香类有机物苯环上官能团的性质、数量和位置等影响消毒副产物的生成;间苯二酚的氯化反应可分为快速反应阶段和慢速反应阶段.  相似文献   

11.
Formation of nitrogenous disinfection by-products from pre-chloramination   总被引:5,自引:0,他引:5  
Chu WH  Gao NY  Deng Y  Templeton MR  Yin DQ 《Chemosphere》2011,85(7):1187-1191
A sampling survey investigated the formation of nitrogenous disinfection by-products (N-DBPs) and carbonaceous DBPs (C-DBPs) from pre-chloramination, an increasingly common treatment strategy in China for regulated C-DBP control, followed by subsequent conventional water treatment processes, i.e., coagulation, sedimentation, and filtration. Dihalogenated N-DBPs typically peaked in the summer and early autumn with a relatively higher temperature, with the maximum levels of dichloroacetamide (DCAcAm), dichloroacetonitrile (DCAN), bromochloroacetonitrile, dibromoacetonitrile and dichloroacetone at 1.8, 6.3, 6.0, 2.6 and 1.8 μg L−1 in the finished water, respectively. Also, the levels of all the dichlorinated N-DBPs were correlated with the ratio of dissolved organic nitrogen (DON) to dissolved organic carbon, implying autochthonous DON played an essential role in the formation of these DBPs. In contrast, the yields of trihalogenated DBPs [chloroform (CF), trichloronitromethane (TCNM) and trichloroacetone (TCAce)] appeared not to be significantly affected by seasons. CF and DCAN were the dominant species in trihalomethanes (THMs) and dihaloacetonitriles (DHANs), respectively. Bromine was more readily incorporated into DHANs to form brominated DBPs than THMs during pre-chloramination. Although pre-chloramination can ensure the finished water to meet with the current Chinese THM regulatory limits, the increased levels of TCNM and TCAce may be a new water quality concern.  相似文献   

12.
以长三角某典型河流型水源地源水为研究对象,设计了传统工艺及基于凹凸棒土处理单元的6种强化工艺,对各工艺及其处理单元应用于典型氯化消毒副产物(三卤甲烷和卤乙酸)及其前体物控制的技术和经济可行性进行了系统分析。结果表明,预O3+凹土强化混凝+O3-GAC强化的工艺对上述2种消毒副产物及其前体物的控制效果最佳;在传统工艺中单纯增加O3处理也能在一定程度上提高其对消毒副产物前体物的去除效果;KMnO4控制消毒副产物的效果一般,但KMnO4处理可强化后续单元对消毒副产物前体物的去除效果。各工艺处理出水中三卤甲烷和卤乙酸单项指标均能达标,但传统工艺和经凹土强化混凝+GAC强化的工艺出水三卤甲烷4种化合物的实测浓度与其各自限值的比值之和均大于1.0,不能满足水质要求,必须进行强化处理。凹土强化混凝单元在6种强化工艺条件下对三卤甲烷生成潜能(THMFP)和卤乙酸生成潜能(HAAFP)的去除率较传统混凝单元平均提高15.99%和4.92%;各强化工艺对THMFP和HAAFP的去除率较传统工艺均提高20%以上(除凹土强化混凝+GAC强化的工艺外),消毒副产物产生量降低40%以上,工艺成本降低20%以上。  相似文献   

13.
Environmental Science and Pollution Research - Disinfection by-products (DBPs) discharged from sewage treatment plants (STPs) could harm downstream receiving waters and drinking water resources....  相似文献   

14.
Formation of disinfection by-products in chlorinated swimming pool water.   总被引:6,自引:0,他引:6  
The formation of five volatile disinfection by-products (DBPs: chloroform, bromodichloromethane, chloral hydrate, dichloroacetonitrile, and 1,1,1-trichloropropanone) by the chlorination of the materials of human origin (MHOs: hair, lotion, saliva, skin, and urine) in a swimming pool model system was examined. Chlorination reactions took place with a sufficient supply of chlorine residuals (0.84 mg Cl2/l < total chlorine < 6.0 mg Cl2/l) in 300 ml glass bottles containing either ground water or surface water as a reaction medium at 30 degrees C and pH 7.0, for either 24 or 72 h. A longer reaction period of 72 h or a higher content of organic materials led to the increased formation of DBPs. Of the DBPs formed by the reaction, chloroform was a major compound found in both ground and surface waters. The formation of chloroform and bromodichloromethane per unit total organic carbon (TOC) concentration was suppressed when all types of MHOs were added to the surface water that already contained DBP precursors such as humic substances. However, the formation of dichloroacetonitrile was promoted, probably due to the increased degradation reactions of nitrogen-containing compounds such as urea and proteins of human origin. In conclusion, the materials of swimmers' origin including hair, lotion, saliva, skin, and urine add to the levels of DBPs in swimming pool water, and any mitigation measures such as periodic change of water are needed to protect swimmers from elevated exposures to these compounds.  相似文献   

15.
The formation was investigated for different groups of disinfection byproducts (DBPs) during chlorination of filter particles from swimming pools at different pH-values and the toxicity was estimated. Specifically, the formation of the DBP group trihalomethanes (THMs), which is regulated in many countries, and the non-regulated haloacetic acids (HAAs) and haloacetonitriles (HANs) were investigated at 6.0≤pH≤8.0, under controlled chlorination conditions. The investigated particles were collected from a hot tub with a drum micro filter. In two series of experiments with either constant initial active or initial free chlorine concentrations the particles were chlorinated at different pH-values in the relevant range for swimming pools. THM and HAA formations were reduced by decreasing pH while HAN formation increased with decreasing pH. Based on the organic content the relative DBP formation from the particles was higher than previously reported for body fluid analogue and filling water. The genotoxicity and cytotoxicity estimated from formation of DBPs from the treated particle suspension increased with decreasing pH. Among the quantified DBP groups the HANs were responsible for the majority of the toxicity from the measured DBPs.  相似文献   

16.

The organic toxicants formed in chlorinated water cause potential harm to human beings, and it is extensively concentrated all over the world. Various disinfection by-products (DBPs) occur in chlorinated water are genotoxic and carcinogenic. The toxicity is major concern for chlorinated DBPs which has been present more in potable water. The purpose of the work was to evaluate genotoxic properties of DBPs in Allium cepa as a plant model system. The chromosomal aberration and DNA laddering assays were performed to examine the genotoxic effect of trichloroacetic acid (TCAA), trichloromethane (TCM), and tribromomethane (TBM) in a plant system with distinct concentrations, using ethyl methanesulfonate (EMS) as positive control and tap water as negative control. In Allium cepa root growth inhibition test, the inhibition was concentration dependent, and EC50 values for trichloroacetic acid (TCAA), trichloromethane (TCM), and tribromomethane (TBM) were 100 mg/L, 160 mg/L, and 120 mg/L respectively. In the chromosome aberration assay, root tip cells were investigated after 120 h exposure. The bridge formation, sticky chromosomes, vagrant chromosomes, fragmented chromosome, c-anaphase, and multipolarity chromosomal aberrations were seen in anaphase–telophase cells. It was noticed that with enhanced concentrations of DBPs, the total chromosomal aberrations were more frequent. The DNA damage was analyzed in roots of Allium cepa exposed with DBPs (TCAA, TCM, TBM) by DNA laddering. The biochemical assays such as lipid peroxidation, H2O2 content, ascorbate peroxidase, guaiacol peroxidase, and catalase were concentration dependent. The DNA interaction studies were performed to examine binding mode of TCAA, TCM, and TBM with DNAs. The DNA interaction was evaluated by spectrophotometric and spectrofluorometric studies which revealed that TCAA, TCM, and TBM might interact with Calf thymus DNA (CT- DNA) by non-traditional intercalation manner.

  相似文献   

17.
Minimization of the formation of disinfection by-products   总被引:1,自引:0,他引:1  
The drinking water industry is required to minimize DBPs levels while ensuring adequate disinfection. In this study, efficient and appropriate treatment scheme for the reduction of disinfection by-product (DBPs) formation in drinking water containing natural organic matter has been established. This was carried out by the investigation of different treatment schemes consisting of enhanced coagulation, sedimentation, disinfection by using chlorine dioxide/ozone, filtration by sand filter, or granular activated carbon (GAC). Bench scale treatment schemes were applied on actual samples from different selected sites to identify the best conditions for the treatment of water. Samples were collected from effluent of each step in the treatment train in order to analyze pH, UV absorbance at 254 nm (UVA254), specific UV absorbance at 254 nm (SUVA254), dissolved organic carbon (DOC), haloacetic acids (HAAs) and trihalomethanes (THMs). The obtained results indicated that using pre-ozonation/enhanced coagulation/activated carbon filtration treatment train appears to be the most effective method for reducing DBPs precursors in drinking water treatment.  相似文献   

18.
Reducing the formation of disinfection by-products by pre-ozonation.   总被引:3,自引:0,他引:3  
The objective of this study is to apply the pre-ozonation process to reduce the formation of disinfection by-products (DBPs). The raw water sample, collected from the Te-Chi Reservoir in central Taiwan, has been polluted by fertilizer. Three types of resins were used to isolate the natural organic matter into seven types of organic fractions. The pre-ozonation was used to oxidize each organic fraction to study the reduction of DBPs of each fraction. Experimental results indicated that the pre-ozonation could reduce the concentration of dissolved organic carbon resulting in the reduction of DBP formation. With the pre-ozonation, 9-54% of DOC and more than 40% of DBPs were reduced. With the analysis of UV adsorption and Fourier transform infrared spectrometer (FTIR), the reduction of A254 and unsaturated functional groups such as aromatic ring and C=C bond containing in the water sample is the major reaction mechanism.  相似文献   

19.
Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag+ ions (as AgNO3). The stability of the nano-silver dispersions in untreated Ottawa River water, with a dissolved organic carbon concentration of 6 mg/L, was significantly higher than the stability of the nano-silver dispersions in distilled, organic-free water. Nano-silver particles suspended in the groundwater agglomerated and were quickly and quantitatively removed from the solution. Our data confirm previous observations that natural dissolved organic matter stabilizes nano-silver particles, while the high-ionic strength of groundwater appears to favor their agglomeration and precipitation. As expected, nano-silver was not stable in Ottawa River water through the chlorination process, but survived for many days when added to the Ottawa River water after treatment with chlorine or chloramines. Stirring appeared to have minimal effect on nano-silver stability in untreated and treated Ottawa River water. The profile of DBPs formed in the presence of nAg differed significantly from the profile of DBPs formed in the absence of nAg only at the 1 mg/L nAg concentration. The differences observed consisted mainly in reduced formation of some brominated DBPs and a small increase in the formation of cyanogen chloride. The reduced formation of brominated congeners may be explained by the decrease in available bromide due to the presence of Ag+ ions. It should be noted that a concentration of 1 mg/L is significantly higher than nAg concentrations that would be expected to be present in surface waters, but these results could be significant for the disinfection of some wastewaters with comparably high nano-silver concentrations.  相似文献   

20.
Background, aim and scope  The use of sodium hypochlorite (HYP) in viticulture results in effluents which are contaminated with halogenated substances. These disinfection by-products (DBPs) can be quantified as group parameter ‘adsorbable organic halogens’ (AOX) and have not been determined in effluents of viticulture yet. The substances that are detected as AOX are unknown. The AOX can be composed of harmless substances, but even toxic contaminants. Thus, it is impossible to assess ecological impacts. The aim of this study is to determine the quantification of AOX and DBPs after the use of HYP. This will be helpful to reduce environmental pollution by AOX. Materials and methods  The potential of HYP to generate AOX was determined in laboratory-scale experiments. Different model solutions were treated with HYP according to disinfection processes in viticulture and conditions of AOX formation in effluents were simulated. AOX were quantified using the flask-shaking method and identified DBPs were investigated by gas chromatography–mass spectrometry. Results  Treatment with HYP resulted in the formation of AOX. The percentage conversion of HYP to AOX was up to 11%. Most important identified DBPs in viticulture are chloroform, dichloroacetic acid and trichloroacetaldehyde. In addition, the formation of carbon tetrachloride (CT), 1,1,1-trichloropropanone, 2,4-dichlorobenzoic acid and 2-chloro-/2,4-dichlorophenylacetic acid was investigated. It was demonstrated that reaction temperature, concentration of HYP and type of organic matter have important influence on the formation of chlorinated DBPs. Discussion  The percentage conversion of HYP to AOX was similar to other published studies. Although a correlation of single compounds and AOX is difficult, chloroform was the predominant AOX. Generation of the volatile chloroform should be avoided due to possible adverse effects. The generation of dichloroacetic acid is of minor importance on account of biodegradation. Trichloroacetaldehyde and 1,1,1-trichloropropanone are weak mutagens and their formation should be avoided. Conclusions  The generation of AOX and chlorinated DBPs can be minimised by reducing the concentrations of the organic materials in the effluents. The removal of organic matter before disinfection results in a decreased formation of AOX. HYP is an effective disinfectant; therefore, it should be used at low temperatures and concentrations to reduce the amount of AOX. If possible, disinfection should be accomplished by the use of no chlorine-containing agents. By this means, negative influences of HYP on the quality of wine can also be avoided. Recommendations and perspectives  Our results indicate that HYP has a high potential to form AOX in effluents of viticulture. The predominant by-products are chloroform, dichloroacetic acid and trichloroacetaldehyde. In further research, wastewaters from a winery and the in- and outflows of two sewage treatment plants were sampled during vintage and analysed. These results will be discussed in a following paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号