共查询到20条相似文献,搜索用时 0 毫秒
1.
The disposal of fly-ash (FA) from coal-fired power stations causes significant economic and environmental problems. Use of such contaminated sites for crop production and use of contaminated water for irrigation not only decreases crop productivity but also poses health hazards to humans due to accumulation of toxic metals in edible grains. In the present investigation, three rice cultivars viz., Saryu-52, Sabha-5204, and Pant-4 were grown in garden soil (GS, control) and various amendments (10%, 25%, 50%, 75% and 100%) of FA for a period of 90 days and effect on growth and productivity of plant was evaluated vis-a-vis metal accumulation in the plants. The toxicity of FA at higher concentration (50%) was reflected by the reduction in photosynthetic pigments, protein and growth parameters viz., plant height, root biomass, number of tillers, grain and straw weight. However, at lower concentrations (10-25%), FA enhanced growth of the plants as evident by the increase of studied growth parameters. The cysteine and non-protein thiol (NP-SH) content showed increase in their levels up to 100% FA as compared to control, however, maximum content was found at 25% FA in Saryu-52 and Pant-4 and at 50% FA in Sabha-5204. Accumulation of Fe, Si, Cu, Zn, Mn, Ni, Cd and As was investigated in roots, leaves and seeds of the plants. Fe accumulation was maximum in all the parts of plant followed by Si and both showed more translocation to leaves while Mn, Zn, Cu, Ni and Cd showed lower accumulation and most of the metal was confined to roots in all the three cultivars. As was accumulated only in leaves and was not found to be in detectable levels in roots and seeds. The metal accumulation order in three rice cultivars was Fe > Si > Mn > Zn > Ni > Cu > Cd > As in all the plant parts. The results showed that rice varieties Saryu-52 and Sabha-5204 were more tolerant and could show improved growth and yield in lower FA application doses as compared to Pant-4. Thus, Sabha-5204 and Saryu-52 are found suitable for cultivation in FA amended agricultural soils for better crop yields. 相似文献
2.
The low bioavailability of Pb and low number of Pb-tolerant plant species represent an important limitation for Pb phytoextraction. It was recently suggested that halophyte plant species may be a promising material for this purpose, especially in polluted salt areas while Pb mobility may be improved by synthetic chelating agents. This study aims to evaluate Pb extraction by the halophyte Sesuvium portulacastrum in relation to the impact of EDTA application. Seedling were cultivated during 60 days on Pb artificially contaminated soil (200, 400, and 800 ppm Pb) in the presence or in the absence of EDTA (3 g kg ?1 soil). Results showed that upon to 400 ppm, Pb had no impact on plant growth. However, exogenous Pb induce a decrease in shoot K + while it increased shoot Mg 2+ and had no impact on shoot Ca 2+ concentrations. Lead concentration in the shoots increased with increasing external Pb doses reaching 1,390 ppm in the presence of 800 ppm lead in soil. EDTA addition had no effect on plant growth but strongly increased Pb accumulation in the shoot which increased from 1,390 ppm in the absence of EDTA to 3,772 ppm in EDTA-amended plants exposed to 800 ppm exogenous Pb. Both Pb absorption and translocation from roots to shoots were significantly enhanced by EDTA application, leading to an increase in the total amounts of extracted Pb per plant. These data suggest that S. portulacastrum is very promising species for decontamination of Pb 2+-contaminated soil and that its phytoextraction potential was significantly enhanced by addition of EDTA to the polluted soil. 相似文献
3.
Optimizing process parameters that affect the remediation time and power consumption can improve the treatment efficiency of the electrokinetic remediation as well as determine the cost of a remediation action. Lab-scale electrokinetic remediation of Pb-contaminated soils was investigated for the effect of complexant ethylenediaminetetraacetic acid (EDTA) and acetic acid and approaching anode on the removal efficiency of Pb. When EDTA was added to the catholyte, EDTA dissolved insoluble Pb in soils to form soluble Pb–EDTA complexes, increasing Pb mobility and accordingly removal efficiency. The removal efficiency was enhanced from 47.8 to 61.5 % when the EDTA concentration was increased from 0.1 to 0.2 M, showing that EDTA played an important role in remediation. And the migration rate of Pb was increased to 72.3 % when both EDTA and acetic acid were used in the catholyte. The “approaching anode electrokinetic remediation” process in the presence of both EDTA and acetic acid had a higher Pb-removal efficiency with an average efficiency of 83.8 %. The efficiency of electrokinetic remediation was closely related to Pb speciation. Exchangeable and carbonate-bounded Pb were likely the forms which could be removed. All results indicate that the approaching anode method in the presence of EDTA and acetic acid is an advisable choice for electrokinetic remediation of Pb-contaminated soil. 相似文献
5.
The effects of three cultivars, two water regimes and two rates of applying nitrogen fertilisers were tested when studying the performance of rice (Oryza sativa L.) near to, and distant from, a fertiliser plant emitting atmospherically dispersed pollutants. The atmosphere near the fertiliser plant had average daily peak concentrations of 144 and 210 microg m(-3) of SO(2) and NO(2), respectively. Growth was less near to, than at a distance from, the fertiliser plant. On average it was decreased by water stress while the effects of different amounts of nitrogen fertiliser were variable. Whilst there were a number of interactions involving nitrogen and water treatments, the most consistent were associated with the responses of the three cultivars at the two locations. The three cultivars performed similarly at the unpolluted control site, but there were major differences at the polluted site. These were most clearly exemplified by changes in the proportion of dry matter allocated to yields of grain and straw. At the unpolluted site, grain accounted for about 30% of the combined yields of grain and straw. At the polluted site, grain accounted for 1, 23 and 31% of the combined grain and straw yields of cultivars CO 43 (the most sensitive), TKM 9 and GR 3 (the most tolerant). Grain yields were closely related to numbers of filled grains per plant. At the polluted site, 98% of grains failed to develop in CO 43, whereas in GR 3, the number of panicles, and therefore the potential number of grains, was significantly enhanced. 相似文献
6.
Environmental Science and Pollution Research - Arsenic is known to be a notorious human carcinogen and rice consumption is becoming the primary human exposure route for As, especially in many Asian... 相似文献
7.
Sulfadimethoxine (SDM) is an antibiotic commonly used in concentrated animal feeding operations and released into the environment via manure application on agricultural lands. Transformation of antibiotics in soil impacts the likelihood of their entry to water bodies, uptake by plants, and thus their effect on terrestrial and aquatic organisms. We conducted experiments to incubate SDM in a sandy loam soil in the presence of humification enzymes commonly found in natural soil, laccase, horseradish peroxidase, and lignin peroxidase. Incubation with the enzymes led to significant reduction in the fraction of SDM extractable from soil, indicating the formation of bound residues. Such transformation was enhanced when the organic matter content in soil is increased or when certain chemical mediators were used along with laccase. The study provided a basis for understanding the environmental fate of sulfonamides and help with the development of remediation methods to mitigate the release of sulfonamides from soil to water. 相似文献
8.
It is shown the 4-bromobiphenyl in soil can be decomposed quickly and almost quantitatively to organic fragments free of bromine, in a specially designed bomb in the presence of a reagent such as cuprous oxide and aqueous alkali, by using microwave energy. 相似文献
9.
Biochar was carbon-rich and generated by high-temperature pyrolysis of biomass under oxygen-limited conditions. Due to the limitations of surface functional groups and the weakness of surface activity in the field of environmental remediation, the raw biochar frequently was chemically modified to improve its properties with a new performance. In this study, a kind of high-efficiency and low-cost amino biochar modified by nano zero-valent iron (ABC/NZVI) was synthesized and applied to paddy soil contaminated with arsenic (As). Dynamic changes of soil properties, arsenic speciations and rhizosphere microbial communities have been investigated over the whole growth period of rice plants. Pot experiments revealed that the ABC/NZVI could decrease the arsenic concentration in rice straw by 47.9% and increase the content of nitrogen in rice straw by 47.2%. Proportion of Geobacter in soil with ABC/NZVI treatment increased by 175% in tillering period; while Nitrososphaera decreased by 61 and 20% in tillering and maturity, respectively, compared to that of control. ABC/NZVI promotes arsenic immobilization in rhizosphere soil and precipitation on root surface and reduces arsenic accumulation in rice. At the same time, ABC/NZVI would inhibit Nitrososphaera which is related to ammonia oxidation process, and it would have a promising potential as soil amendment to reduce nitrogen loss probably. 相似文献
10.
Human exposure to toxic heavy metals via the food chain is of increasing concern. In the present study, the effects of soil type and genotype on variation in arsenic (As) concentrations of different organs were investigated by using nine rice cultivars grown in two soils, with two levels of As contamination. There were significant genotypic differences ( P < 0.05) in As concentrations of all organs, and As concentrations of polished grain were significantly affected by genotype and soil type. The As concentration in polished grain was higher in red paddy soil under As treatment, with range from 0.24 to 1.03 mg kg −1, and the As concentration of three cultivars exceeded the concentration of Chinese Food Hygiene Standard (0.7 mg kg −1). The As concentrations in stems, leaves and polished grain were all significantly and positively correlated. The As concentrations in polished grain were positively and significantly ( P < 0.01) correlated with As root-grain translocation factor. The results indicated that As concentration in grain was partially governed by As uptake and the transfer of As from root to grain. The grain As concentration of the nine cultivars was significantly correlated between the two soil types at different levels of As contamination. Some genotypes, such as japonica rice (e.g. Ning jing 1 and Nan jing 32) had consistently low grain As concentrations. The results suggest the possibility of breeding the As rice cultivars to produce grain for safe consumption from soils with slight and moderate levels of As. 相似文献
11.
The impact of oxygen diffusion from plant roots on the soil redox in the root zone in flooded rice bays was investigated using two Australian rice growing soils. The rates of production of Fe(II) and Mn(II) in pore water resulting from the reduction of soil minerals was used to gauge the extent of development of anaerobic conditions and the time taken for equilibrium to establish. Soil concentrations of readily reducible Fe were 13–28 times greater than Mn, making Fe a more reliable indicator of redox conditions than Mn. In addition, Mn(II) concentrations reached equilibrium far more rapidly than Fe, which made the identification of any contribution to soil redox by oxygen diffusing from rice plant roots difficult to observe. Dissection of soil cores showed that more than 80% of the rice root mass occurred in the top 4 cm of soil, suggesting that any contribution roots may make to the redox potential of the flooded soils would occur in this region. However, studies conducted indicated that the diffusion of oxygen from the surface floodwater into soil pore water in the 2.5 cm layer of soil was so substantial that it would mask any contribution made by rice plant roots to the overall soil redox in this root zone. 相似文献
12.
Environmental Science and Pollution Research - The solidification/stabilization (S/S) method is a common technique for the remediation of soils polluted by heavy metal. This study, thus, evaluated... 相似文献
13.
Polyphenols including tannins comprise a large percentage of plant detritus such as leaf litter, and affect soil processes including metal dynamics. We tested the effects of tannins on soil metal mobilization by determining the binding stoichiometries of two model polyphenols to Al(III) and Fe(III) using micelle-mediated separation and inductively coupled plasma optical emission spectroscopy (ICP-OES). By fitting the data to the Langmuir model we found the higher molecular weight polyphenol (oenothein B) was able to bind more metal than the smaller polyphenol (epigallocatechin gallate, EGCg). For example, oenothein B bound 9.43 mol Fe mol ?1, while EGCg bound 4.41 mol of Fe mol ?1. Using the parameters from the binding model, we applied the Langmuir model for competitive binding to predict binding for mixtures of Al(III) and Fe(III). Using the parameters from the single metal experiments and information about polyphenol sorption to soils we built a model to predict metal mobilization from soils amended with polyphenols. We tested the model with three natural soils and found that it predicted mobilization of Fe and Al with r2 = 0.92 and r2 = 0.88, respectively. The amount of metal that was mobilized was directly proportional to the maximum amount of metal bound to the polyphenol. The secondary parameter in each model was the amount of weak organically chelated Fe or Al that was in the soil. This study provides the first compound-specific information about how natural polyphenols interact with metals in the environment. We propose a model that is applicable to developing phytochelation agents for metal detoxification, and we discuss how tannins may play a role in metal mobilization from soils. 相似文献
14.
Monomethylmercury (CH 3Hg + and its complexes; MeHg hereafter) is a known developmental neurotoxin. Recent studies have shown that rice ( Oryza sativa L.) grain grown from mercury (Hg) mining areas may contain elevated MeHg concentrations, raising concerns over the health of local residents who consume rice on a daily basis. An analytical method employing high performance liquid chromatography (HPLC) - inductively coupled plasma mass spectrometry (ICP-MS) following enzymatic hydrolysis was developed to analyze the speciation of MeHg in uncooked and cooked white rice grain grown from the vicinity of a Hg mine in China. The results revealed that the MeHg in the uncooked rice is present almost exclusively as CH 3Hg-l-cysteinate (CH 3HgCys), a complex that is thought to be responsible for the transfer of MeHg across the blood-brain and placental barriers. Although cooking does not change the total Hg or total MeHg concentration in rice, no CH 3HgCys is measurable after cooking, suggesting that most, if not all, of the CH 3HgCys is converted to other forms of MeHg, the identity and toxicity of which remain elusive. 相似文献
15.
The effects of several silicates (talcum powder (TP), calcium silicate (CS), sodium silicate (SS), and potassium silicate (PS)), in comparison with other amendments (quicklime (QL) and potassium dihydrogen phosphate (PDP)) on cadmium (Cd) uptake by three dicotyledonous crops ( Amaranthus hypochondriacus L. Cv. ‘K112’, Amaranthus tricolor L., and Brassica oleracea var. albiflora Kuntze) were investigated in Cd–contaminated soil. The effects of both application methods of amendments (singly and combined) and timing of application were also evaluated. Sodium silicate was the most effective in reducing crop Cd uptake and translocation, which was diminished by 51 % in roots, 53 % in stems, and 72 % in leaves on average. Application of CS amendment showed greater efficiency than PDP amendment in decreasing Cd uptake by crops and resulted in increased biomass. Potassium silicate only slightly decreased shoot Cd concentration. Combination of PDP and SS was able to overcome the inhibitory effect of SS on crop yield while decreasing Cd concentrations in roots, stems and leaves of the tested crops by average rates of 52, 65, and 68 % respectively. Applications of SS and PS significantly reduced the root-to-shoot Cd transfer factor. We found that Si accumulation in crops was not associated with lower Cd concentration, indicating that Si in crops may play a major role in alleviating metal stress rather than inhibiting crop Cd accumulation. We suggested that the inhibitive effect of silicates on crops Cd uptake was majorly attributed to the properties of the silicates, those were their specific effects on soil pH and cations, which increased Cd adsorption by soil and suppressed Cd uptake from soil solution by increasing the relative dissolved concentrations of competing cations. 相似文献
16.
The consumption of paddy rice ( Oryza sativa L.) is a major inorganic arsenic exposure pathway in S.E. Asia. A multi-location survey was undertaken in Guangdong Province, South China to assess arsenic accumulation and speciation in 2 rice cultivars, one an Indica and the other a hybrid Indica. The results showed that arsenic concentrations in rice tissue increased in the order grain < husk < straw < root. Rice grain arsenic content of 2 rice cultivars was significant different and correlated with phosphorus concentration and molar ratio of P/As in shoot, being higher for the Indica cultivar than for the hybrid Indica, which suggests altering shoot phosphorus status as a promising route for breeding rice cultivars with reduced grain arsenic. Speciation of grain arsenic, performed using HPLC-ICP-MS, identified inorganic arsenic as the dominant arsenic species present in the rice grain. 相似文献
17.
Hydroponic experiments were carried out to investigate the effects of root anatomy, induced by aeration and stagnation, and Fe plaque on arsenic (III&V) uptake and translocation by rice plants. The results showed that As uptake in rice plants (Gui Chao-2) treated by aeration was decreased due to lower root specific surface area. Rice roots with larger specific surface area tended to form more Fe plaque, and Fe plaque affected As uptake kinetics by changing As influx curves from linear to hyperbolic for As(III) and from hyperbolic to S-curve for As(V). Fe plaque increased As(III&V) adsorption and minimized the effects of root anatomy characteristics on As uptake into roots and subsequently translocation to shoots. Fe plaque increased As(III) uptake rate at As(III) concentrations of 0.5∼8 mg L −1, reduced As(V) uptake rate at low As(V) concentrations (<2 mg L −1), but increased As uptake rate at high As(V) concentrations (>6 mg L −1). 相似文献
18.
Bo Ngam lead mine soils contain high concentrations of lead (up 1% total Pb) and low amounts of organic matter and major nutrients (N, P, K). A glasshouse study was conducted to compare growth performance, metal tolerance and metal uptake by two grasses, Thysanolaena maxima (Roxb.) O. Kuntze and four ecotypes of Vetiveria zizanioides (L.) Nash, syn. Chrysopogon zizanioides (L.) Roberty (three from Thailand: Surat Thani, Songkhla and Kamphaeng Phet, and one from Sri Lanka) and to study the effects of pig manure (20% and 40% w/w) and inorganic fertilizer (75 and 150 mg kg(-1)) amendments to this lead mine soil. The results showed that both T. maxima and V. zizanioides (Surat Thani and Songkhla) could tolerate high Pb concentrations in soil (10750 mg kg(-1)) and had very good growth performance. Application of pig manure increased electrical conductivity (EC) and reduced DTPA-extractable Pb concentration in the soils. Pig manure application improved the growth of vetiver, especially at 20%, application dosage. Vetiver had the highest biomass. T. maxima could not tolerate high EC values. The uptake by roots and transport of Pb to shoots of both species was reduced when soils were amended with pig manure. Application of inorganic fertilizer did not improve growth of vetiver but did improve that of T. maxima. Fertilizer application did not have any great influence on the Pb uptake in vetiver while T. maxima took up more Pb as a result of the fertilizer enhancing its biomass yield. Both species transported low Pb concentrations to shoots (8.3-179 mg kg(-1)) and accumulated higher concentrations in roots (107-911 mg kg(-1)). In summary, both species may be species well suited for phytostabilization in tropical lead mine areas. 相似文献
19.
Two cultivation techniques (i-pruning and ii-nodal adventitious root encouragement) were investigated for their ability to increase PCB phytoextraction by Cucurbita pepo ssp pepo cv. Howden (pumpkin) plants in situ at a contaminated industrial site in Ontario (Aroclor 1248, mean soil [PCB] = 5.6 μg g −1). Pruning was implemented to increase plant biomass close to the root where PCB concentration is known to be highest. This treatment was found to have no effect on final shoot biomass or PCB concentration. However, material pruned from the plant is not included in the final shoot biomass. The encouragement of nodal adventitious roots at stem nodes did significantly increase the PCB concentration in the primary stem, while not affecting shoot biomass. Both techniques are easily applied cultivation practices that may be implemented to decrease phytoextraction treatment time. 相似文献
20.
Effect of addition of municipal solid waste compost (MSWC) on chromium (Cr) content of submerged rice paddies was studied. Experiments were conducted during the three consecutive wet seasons from 1997 to 1999 on rice grown under submergence, at the Experimental Farm of Calcutta University, India. A sequential extraction method was used to determine the various chromium fractions in MSWC and cow dung manure (CDM). Chromium was significantly bound to the organic matter and Fe and Mn oxides in MSWC and CDM. Chromium content in rice straw was higher than in rice grain. Chromium bound with organic matter in MSWC best correlated with straw Cr (r=0.99**) followed by Fe and Mn oxides (r=0.97*) and water soluble as well as exchangeable fractions (r=0.96*). The water soluble and the exchangeable fractions in MSWC best correlated with grain Cr (r=0.98*). The Cr content of rice grain had the highest correlation with water soluble and exchangeable Cr (r=0.99**) while the straw Cr best correlated with the Fe and Mn oxides (r=0.98*). Both the carbonate bound and residual fractions in MSWC and CDM did not significantly correlate with rice straw and grain Cr. MSWC would be a valuable resource for agriculture if it can be used safely, but long-term use may require the cessation of the dumping by the leather tanneries and other major contributors of pollutants. 相似文献
|