首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Stream waters draining an old mining area present very high rare earth element (REE) contents, reaching 928 microg/l as the maximum total value (sigmaREE). The middle rare earth elements (MREEs) are usually enriched with respect to both the light (LREEs) and heavy (HREEs) elements of this group, producing a characteristic "roof-shaped" pattern of the shale Post-Archean Australian Shales-normalized concentrations. At the Fenice Capanne Mine (FCM), the most important base metal mine of the study area, the REE source coincides with the mine tailings, mostly the oldest ones composed of iron-rich materials. The geochemical history of the REEs released into Noni stream from wastes in the FCM area is strictly determined by the pH, which controls the REE speciation and in-stream processes. The formation of Al-rich and mainly Fe-rich flocs effectively scavenges the REEs, which are readily and drastically removed from the solution when the pH approaches neutrality. Leaching experiments performed on flocs and waste materials demonstrate that Fe-oxides/oxyhydroxides play a key role in the release of lanthanide elements into stream waters. The origin of the "roof-shaped" REE distribution pattern as well as the peculiar geochemical behavior of some lanthanide elements in the aqueous system are discussed.  相似文献   

2.
The precision and accuracy of the determination of particu-late sulfate and fluoride, and gas phase SO2 and HF are estimated from the results obtained from collocated replicate samples and from collocated comparison samples for high-and low-volume filter pack and annular diffusion denuder samplers. The results of replicate analysis of collocated samples and replicate analyses of a given sample for the determination of spherical aluminosilicate fly ash particles have also been compared. Each of these species is being used in the chemical mass balance source apportionment of sulfur oxides in the Grand Canyon region as part of Project MOHAVE, and the precision and accuracy analyses given in this paper provide input to that analysis. The precision of the various measurements reported here is ±1.8 nmol/m3 and ±2.5 nmol/m3 for the determination of SO2 and sulfate, respectively, with an annular denuder. The precision is ±0.5 nmol/m3 and ±2.0 nmol/m3 for the determination of the same species with a high-volume or low-volume filter pack. The precision for the determination of the sum of HF(g) and fine particulate fluoride is ±0.3 nmol/m3. The precision for the determination of aluminosilicate fly ash particles is ±100 particles/m3. At high concentrations of the various species, reproducibility of the various measurements is ±10% to ±14% of the measured concentration. The concentrations of sulfate determined using filter pack samplers are frequently higher than those determined using diffusion denuder sampling systems. The magnitude of the difference (e.g., 2-10 nmol sulfate/m3) is small, but important relative to the precision of the data and the concentrations of particulate sul-fate present (typically 5-20 nmol sulfate/m3). The concentrations of SO2(g) determined using a high-volume cascade impactor filter pack sampler are correspondingly lower than those obtained with diffusion denuder samplers. The concentrations of SOx (SO2(g) plus particulate sulfate) determined using the two samplers during Project MOHAVE at the Spirit Mountain, NV, and Hopi Point, AZ, sampling sites were in agreement. However, for samples collected at Painted Desert, AZ, and Meadview, AZ, the concentrations of SOx and SO2(g) determined with a high-volume cascade impactor filter pack sampler were frequently lower than those determined using a diffusion denuder sampling system. These two sites had very low ambient relative humidity, an average of 25%. Possible causes of observed differences in the SO2(g) and sulfate results obtained from different types of samplers are given.  相似文献   

3.
This paper reports the results of over 2 years of measurements of several of the species comprising atmospheric SOx (=SO2+SO42−) and NOy (=NO+NO2 + PAN + HNO3+NO3+ organicnitrates + HONO + 2N2O5 …) at Whiteface Mountain, New York. Continuous real-time measurements of SO2 and total gaseous NOy provided data for about 50% and 65% of the period, respectively, and 122 filter pack samples were obtained for HNO3, SO2 and aerosol SO42−, NO3, H+ and NH4+. Concentrations of SO2 and NOy were greatest in winter, whereas concentrations of the reaction products SO42− and HNO3were greatest in summer. The seasonal variation in SO42− was considerably more pronounced than that of HNO3and the high concentrations of SO42− aerosol present in summer were also relatively more acidic than SO42− aerosol in other seasons. As a result, SO42− aerosol was the predominant acidic species present in summer, HNO3was predominant in other seasons. Aerosol NO3 concentrations were low in all seasons and appeared unrelated to simultaneous NOy and HNO3concentrations. These data are consistent with seasonal variations in photochemical oxidation rates and with existing data on seasonal variations in precipitation composition. The results of this study suggest that emission reductions targeted at the summer season might be a cost-effective way to reduce deposition of S species, but would not be similarly cost-effective in reducing deposition of N species. kwAcid deposition, seasonal variation, sulfate, nitrate, nitric acid, sulfur dioxide, oxides of nitrogen, hydrogen peroxide, ozone, air pollution, Adirondack Mountains  相似文献   

4.
Sequoia National Park has monitored wet deposition chemistry in conjunction with the National Atmospheric Deposition Program and National Trends Network (NADP/NTN), on a weekly basis since July, 1980. Annual deposition of H, NO3 and SO4 (0.045, 3.6, and 3.9 kg ha−1 a−1, respectively) is relatively low compared to that measured in the eastern United States, or in the urban Los Angeles and San Francisco areas. Weekly ion concentrations are highly variable. Maximum concentrations of 324,162, and 156 μeq ol−1 of H, NO3 and SO4 have been recorded for one low volume summer storm (1.4 mm). Summer concentrations of NO3 and SO4 average two and five times higher, respectively, than concentrations reported for remote areas in the world. There is considerable variability in the ionic concentration of low volume samples, and much less variability in moderate and high volume samples.  相似文献   

5.
The aim of study was to determine the phytoextraction of rare earth elements (REEs) to roots, stems and leaves of five herbaceous plant species (Achillea millefolium L., Artemisia vulgaris L., Papaver rhoeas L., Taraxacum officinale and Tripleurospermum inodorum), growing in four areas located in close proximity to a road with varied traffic intensity. Additionally, the relationship between road traffic intensity, REE concentration in soil and the content of these elements in plant organs was estimated. A. vulgaris and P. rhoeas were able to effectively transport REEs in their leaves, independently of area collection. The highest content of REEs was observed in P. rhoeas leaves and T. inodorum roots. Generally, HREEs were accumulated in P. rhoeas roots and leaves and also in the stems of T. inodorum and T. officinale, whereas LREEs were accumulated in T. inodorum roots and T. officinale stems. It is worth underlining that there was a clear relationship between road traffic intensity and REE, HREE and LREE concentration in soil. No positive correlation was found between the concentration of these elements in soil and their content in plants, with the exception of T. officinale. An effective transport of REEs from the root system to leaves was observed, what points to the possible ability of some of the tested plant species to remove REEs from soils near roads.  相似文献   

6.
Interest in air pollution injury to native vegetation has been generated with the construction and planned construction of large coal-fired power plants near the coal reserves in the southwest desert areas of the United States. Since information on the effects of SO2 on these native species was not available in the literature, fumigation studies were conducted with portable chambers placed over native species in the field with SO2 and SO2 + NO2. Pollutant concentrations were measured and controlled with instruments located in a mobile laboratory. Each fumigation was of two hours duration and the concentration ranged from 0.5 to 11 ppm SO2 and from 0.1 to 5 ppm NO2. Concentrations of SO2 above 2 ppm were required to cause injury to all but a few of the 87 species studied. Many of the native desert species proved to be highly resistant to injury from these gases.  相似文献   

7.
A study of deposition velocities to snow was conducted during the 1982–1983 and 1983–1984 winters at the University of Michigan Biological Station in northern Michigan. Weekly measurements were made of dry deposition rates to snow and the atmospheric concentrations of the depositing species. SO2, with an average concentration of 2.2 ppb, was the dominant atmospheric sulfur containing species. NO2, with an average concentration of 1.8 ppb, was the dominant atmospheric nitrogenous species. NO3 deposition was due primarily to HNO3, which averaged 0.2 ppb. The HNO3 deposition velocity averaged 1.4cm s−1. The SO2 deposition velocity varied with temperature, averaging 0.15 cm s−1 for samples with appreciable exposure time above − 3°C, and 0.06 cm s−1 for samples which remained below an ambient temperature of −3°C. Deposition velocities of Ca2+, Mg2+ , Na+, K+ and NH+4 were 2.1, 1.5, 0.44, 0.51 and 0.10cm s−1, respectively. The mass median diameters of these species were 4.4, 2.7, 1.8, 0.9 and 0.46 μm, respectively.  相似文献   

8.
Total suspended particulate (TSP) samples were collected during dust, haze, and two festival events (Holi and Diwali) from February 2009 to June 2010. Pollutant gases (NO2, SO2, and O3) along with the meteorological parameters were also measured during the four pollution events at Agra. The concentration of pollutant gases decreases during dust events (DEs), but the levels of the gases increase during other pollution events indicating the impact of anthropogenic emissions. The mass concentrations were about two times higher during pollution events than normal days (NDs). High TSP concentrations during Holi and Diwali events may be attributed to anthropogenic activities while increased combustion sources in addition to stagnant meteorological conditions contributed to high TSP mass during haze events. On the other hand, long-range transport of atmospheric particles plays a major role during DEs. In the dust samples, Ca2+, Cl?, NO3 ?, and SO4 2? were the most abundant ions and Ca2+ alone accounted for 22 % of the total ionic mass, while during haze event, the concentrations of secondary aerosols species, viz., NO3 ?, SO4 2?, and NH4 +, were 3.6, 3.3, and 5.1 times higher than the normal days. During Diwali, SO4 2? concentration (17.8 μg?m?3) was highest followed by NO3 ?, K+, and Cl? while the Holi samples were strongly enriched with Cl? and K+ which together made up 32.7 % of the total water-soluble ions. The ion balances indicate that the haze samples were acidic. On the other hand, Holi, Diwali, and DE samples were enriched with cations. The carbonaceous aerosol shows strong variation with the highest concentration during Holi followed by haze, Diwali, DEs, and NDs. However, the secondary organic carbon concentration follows the order haze > DEs > Diwali > Holi > NDs. The scanning electron microscope/EDX results indicate that KCl and carbon-rich particles were more dominant during Holi and haze events while DE samples were enriched with particles of crustal origin.  相似文献   

9.
The concentrations and characteristics of the major components in ambient fine particles in the urban city of Kaohsiung, Taiwan were measured and evaluated. PM2.5 samples were collected using a dichotomous sampler from November 1998 to April 1999 and analyzed for water-soluble ion species using ion chromatography and for carbonaceous species using an elemental analyzer. It was found that SO42−, NO3, and NH4+ dominated the identifiable components, and occupied 42.2% and 90.0% of PM2.5 mass and total dissolved ionic concentrations. Carbonaceous species (organic and elemental carbon) accounted for 20.8% of PM2.5. The secondary aerosol formed through the NO2/SO2 gas-to-particle conversion was estimated based on the sulfur/nitrogen oxidation ratio (SOR/NOR), i.e., sulfate sulfur/nitrate nitrogen to total sulfur/total nitrogen. The average SOR and NOR values were 0.25 and 0.07 for PM2.5. The high SOR and NOR values obtained in this study suggested that there existed a secondary formation of SO42− from SO2 along with NO3 from NO2 in the atmosphere. The secondary organic carbon formed through the volatile organic compound gas-to-particle conversion was estimated from the minimum ratio between organic and elemental carbon obtained in this study, and was found to constitute 40.0% of the total organic carbon for PM2.5 (6.6% of the particle mass). The results obtained in this study suggest that the formation of secondary aerosols due to conversion from gaseous precursors is significant and important in urban locations.  相似文献   

10.
A study of major atmospheric particulate sulfate species was conducted during 30 July 1980–1983 September 1980 in Sterling Forest, a rural area in Tuxedo, NY, not affected by major local sources of pollution. In situ measurements of total sulfate, sulfuric acid and ammonium sulfate ammonium bisulfate were made using Thermal Analysis-Flame Photometric Detection (TA-FPD). These measurements were compared to the total sulfate and strong acid (H+) concentration measured in simultaneously collected 12 h, treated quartz filter samples. The concentration of NH4HSO4 was inferred from the difference between the total strong acid concentration and the sulfuric acid measurements, so that total sulfate and acid concentrations could be balanced. A major sulfate pollution episode occurred during the period of 27–29 August. The concentration of H+ showed an excess above that necessary to account for the TA-FPD H2SO4 measurement, indicating the presence of NH4 HSO4. The maximum 12 h average concentrations of H2SO4, NH4HSO4 and (NH4)2SO4 were 5.18, 11.42 and 10.08 μg m−3 as SO42− respectively, and were measured from 9:15 to 21:15 on 28 August. The study demonstrated the usefulness of concurrent measurements of airborne particulate sulfate by filter extraction and TA-FPD to identify acidic sulfate species.  相似文献   

11.
The concentrations at the 1–100 ng g−1 level of seven major ions (H+, SO42−, NO3, Cl, Na+, NH4+ and K+) of South Pole snow were determined in 100 samples representing the continuous time period 1959–1969. The ionic balance in South Polar snow is achieved for the first time and the existence of the three strong mineral acids H2SO4, HNO3 and HCl is demonstrated. It is found that NH4+ concentrations are an order of magnitude less than that of acid species. With the aid of the clear seasonal patterns exhibited by the depth profiles of several of the measured ions, we review the different natural sources contributing to the aerosol at the South Pole: These include sea spray, volcanoes, biogenic activity and nitrogen fixation.  相似文献   

12.
Lignite (PK), bituminous (FI) and biomass (SE) fly ashes (FAs) were mineralogically and geochemically characterised, and their element leachability was studied with batch leaching tests. The potential for acid neutralisation (ANP) was quantified by their buffering capacity, reflecting their potential for neutralisation of acid mine drainage. Quartz was the common mineral in FAs detected by XRD with iron oxide, anhydrite, and magnesioferrite in PK, mullite and lime in FI, and calcite and anorthite in SE. All the FAs had high contents of major elements such as Fe, Si, Al and Ca. The Ca content in SE was six and eight times higher compared to PK and FI, respectively. Sulphur content in PK and SE was one magnitude higher than FI. Iron concentrations were higher in PK. The trace element concentrations varied between the FAs. SE had the highest ANP (corresponding to 275 kg CaCO3?tonne?1) which was 15 and 10 times higher than PK and FI, respectively. The concentrations of Ca2+, SO4 2?, Na+ and Cl? in the leachates were much higher compared to other elements from all FA samples. Iron, Cu and Hg were not detected in any of the FA leachates because of their mild to strong alkaline nature with pH ranging from 9 to 13. Potassium leached in much higher quantity from SE than from the other ashes. Arsenic, Mn and Ni leached from PK only, while Co and Pb from SE only. The concentrations of Zn were higher in the leachates from SE. The FAs used in this study have strong potential for the neutralisation of AMD due to their alkaline nature. However, on the other hand, FAs must be further investigated, with scaled-up experiments before full-scale application, because they might leach pronounced concentrations of elements of concern with decreasing pH while neutralising AMD.  相似文献   

13.
TSP and PM2.5 samples were collected at Xi'an, China during dust storms (DSs) and several types of pollution events, including haze, biomass burning, and firework displays. Aerosol mass concentrations were up to 2 times higher during the particulate matter (PM) events than on normal days (NDs), and all types of PM led to decreased visibility. Water-soluble ions (Na+, NH4+, K+, Mg2+, Ca2+, F?, Cl?, NO3?, and SO42?). were major aerosol components during the pollution episodes, but their concentrations were lower during DSs. NH4+, K+, F?, Cl?, NO3?, and SO42? were more abundant in PM2.5 than TSP but the opposite was true for Mg2+ and Ca2+. PM collected on hazy days was enriched with secondary species (NH4+, NO3?, and SO42) while PM from straw combustion showed high K+ and Cl?. Firework displays caused increases in K+ and also enrichments of NO3? relative to SO42?. During DSs, the concentrations of secondary aerosol components were low, but Ca2+ was abundant. Ion balance calculations indicate that PM from haze and straw combustion was acidic while the DSs samples were alkaline and the fireworks' PM was close to neutral. Ion ratios (SO42?/K+, NO3?/SO42?, and Cl?/K+) proved effective as indicators for different pollution episodes.  相似文献   

14.
Boron (B) concentrations and isotopic compositions were measured in the precipitations of Guiyang, China for one year. Most precipitation samples have boron concentrations of from 2.1 to 4.8 ng ml?1, and δ11B values of from +2.0‰ to +30.0‰. Boron concentrations and δ11B values of heavy rain samples are generally higher than those of light rain and snow samples. Anthropogenic inputs provided most of the SO42? and NO3?, which were predominant ions in the precipitation. The major cation Ca2+ in the precipitation was mainly originated from local dust.The total boron in precipitation from Guiyang is explained by the mixing model of three boron sources. Assuming a δ11B value of +45‰ for the seawater component, contributions of marine source, organic matter and biomass combustion, and coal combustion were estimated to be 32%, 49%, and 19%, respectively to the total boron in Guiyang precipitations. The coal combustion and biomass (and/or organic matter) combustion showed different contributions of boron to the rainwaters in different seasons, the former in cold season while the latter in summer season had a more marked influence on the chemical and isotopic composition of the rainwater. The largest contribution of seawater-originated boron was observed for the heavy rain samples, which was up to 68%. This study indicates that the atmospheric environment of Guiyang city was strongly influenced by human activities, and boron isotopic composition is of great sensitivity to anthropogenic sources and can be a powerful technique to trace various sources of atmospheric emissions and even their origins.  相似文献   

15.
A 14-week filter pack (FP) sampler evaluation field study was conducted at a site near Bondville, IL to investigate the impact of weekly sampling duration. Simultaneous samples were collected using collocated filter packs (FP) from two independent air quality monitoring networks (CASTNet and Acid-MODES) and using duplicate annular denuder systems (ADS). Precision estimates for most of the measured species are similar for weekly ADS and composited FPs. There is generally good agreement between the weekly CASTNet FP results aggregated from weekly daytime and weekly nighttime samples and those aggregated from daily 24 h Acid-MODES samples; although SO2 is the exception, and CASTNet concentrations are higher than Acid-MODES. Comparison of weekly ADS results with composited weekly FP results from CASTNet shows good agreement for SO2-4. With the exception of the two weeks where the FP exceeded the ADS, both HNO3 and the sum of particulate and gaseous NO-3 show good agreement. The FP often provides good estimates of HNO3, but when used to sample atmospheres that have experienced substantial photochemical reactivity, FP HNO3 determinations using nylon filters may be biased high. It is suggested that HNO2 or some other oxidized nitrogen compound can accumulate on a regional scale and may interfere with the FP determination of HNO3. FP particulate NO-3 results are in fair agreement with the ADS. Since FP SO2 results are biased low by 12–20%, SO2 concentration in the CASTNet data archive should be adjusted upward. Nylon presents problems as a sampling medium in terms of SO2 recovery and specificity for HNO3. Additional comparative sampler evaluation studies are recommended at several sites over each season to permit comprehensive assessment of the concentrations of atmospheric trace constituents archived by CASTNet.  相似文献   

16.
Measurements are reported of the chemical composition of the liquid water and interstitial air in warm (> 0°C), non-precipitating stratus and strato-cumulus clouds at various locations in the eastern United States. Inorganic ionic composition of the cloud water was generally dominated by H+, NH4+, NO3 and SO42−, similar to the composition of precipitation in this region of the U.S. Concentrations of the corresponding interstitial aerosol species and gaseous HNO3 were invariably low in comparison to concentrations of the respective ionic species in cloudwater. In contrast, the concentration of NOx (i.e. NO + NO2 + organic nitrates) was invariably comparable to or in excess of that of cloudwater nitrate. Sulfur dioxide was found at varying concentrations relative to cloudwater sulfate. In many cases, the SO2 concentration was quite low (< 0.2 ppb) even in the presence of substantial quantities of cloudwater SO42− (> 1 ppb equivalent gas-phase concentration), suggesting large fractional conversion and incorporation into cloudwater. In other cases, in which dilute SO2 plumes (pso, > 5 ppb) were observed in the cloud interstitial air, the gaseous SO2 concentration substantially exceeded the cloudwater sulfate concentration.Concentrations of H2O2 in cloudwater were found to exhibit strong inverse correlation with interstitial SO2. Appreciable concentrations of SO2 in cloud interstitial air and H2O2 in cloudwater were only rarely observed to coexist, for the most part only one or the other being present above the limit of detection. These observations are consistent with aqueous-phase oxidation of SO2 by H2O2, as has been inferred previously on the basis of laboratory kinetic studies, and with the hypothesis that depending on relative concentrations, either of these species can be a limiting reagent for in-cloud SO2 oxidation. The uptake of NOx as cloudwater nitrate is less complete than the uptake of SO2 as sulfate, and evidence for the occurrence of similar in-cloud processes causing the conversion of NO or NO2 to cloudwater nitrate has not been found.  相似文献   

17.
SO2 concentrations for two consecutive growing seasons were obtained from an eleven-station monitoring network in a portion of the Ohio River Valley that contains four coal-fired generating stations. Elevated SO2 concentrations occurred at all sites with a diurnal pattern that provided higher frequencies of occurrence between 1100 and 1700 hours. Most episodes with concentrations equal to or greater than 267 μg m−3 (0.1 ppm) were brief, lasting for two hours or less. These episodes rarely occurred on two or more consecutive days. Elevated NOx was associated with elevated SO2. Temporal patterns of SO2 occurrence as well as concentrations and durations of exposures should be duplicated in experiments with annual vegetation species if results are to relate to actual field conditions near sources. Since patterns vary with topography, climate and source-receptor relationships, SO2 exposure patterns in experiments with vegetation should be tailored to the particular region under study.  相似文献   

18.
We examine the chemical differences between event and weekly samples of precipitation collected in northeastern Illinois from April 1980 to March 1982. Analyses were conducted for H+, Ca2+, Mg2+, NH4+, SO42− and NO3 concentrations as well as for pH and conductivity. In addition, the 1980–1981 samples, were titrated to determine the total, strong and weak acid concentrations. Although seasonal and annual precipitation amounts were different for the two years, the general pattern of event and weekly sample ion concentrations were similar. Weekly samples had significantly less [NH4+] and higher laboratory pH in all seasons and more [SO42−] in every season but summer. Weekly samples had significantly more [Ca2−] and [Mg2+] during seasons with little precipitation. Event and weekly [NO3] were never significantly different. The weekly samples had more total acidity in the spring but less in the summer. The observed differences may be attributed to chemical degradation of the weekly samples while waiting collection and during shipment between the field and the laboratory.  相似文献   

19.
As a part of a receptor model study of the Philadelphia, PA atmosphere, particulate samples were collected from seven air pollution sources in the area: two oil-fired power plants, a coal-fired power plant, a fluidized catalytic cracker, a refuse incinerator, a secondary aluminum smelter and an antimony ore roaster. Samples were collected In two size fractions with a dilution source sampler connected to a modified dichotomous sampler. Masses of collected material were determined gravlmetrlcally. Samples were analyzed for elements by x-ray fluorescence followed by Instrumental neutron activation analysis of some samples. Other samples were analyzed by chemical methods for volatile and nonvolatile carbon, SO4 2? and NH4 +. Data are presented for up to 46 elements and species on fine (<2.5-μm aerodynamic equivalent diameter) and coarse (2.5 μm < diam < 7-10 μm) particles from each source. Although the data were collected for use in Philadelphia, they should be of value for receptor modeling of other areas having similar sources. The most unexpected results were the large amounts of rare earth elements on particles from the catalytic cracker (e.g., 0.31 percent La In fine fraction) and the oil-fired power plants (120 and 420 ppm La in fine fraction). Substantial amounts of primary SO4 2? are released from the oil-fired plants, the SO4 2? concentrations accounting for 40-45 percent of the fine particulate mass.  相似文献   

20.
A year-long field study to characterize the ionic species in PM2.5 was carried out in Shanghai and Beijing, China, in 1999–2000. Weekly samples of PM2.5 were collected using a special low flow rate (0.4 l min−1) sampler. In Shanghai, SO42− NO3 and NH4+ were the dominant ionic species, which accounted for 46%, 18% and 17% of the total mass of ions, respectively. Local SO2 emissions were an important source of SO42− in PM2.5 because the SO42− concentration was correlated with the SO2 concentration (r=0.66). The relatively stable SO42−/SO2 mass ratio over a large range of temperatures suggests that gas-phase oxidation of SO2 played a minor role in the formation of SO42−. The sum of SO42− and NO3 was highly correlated with NH4+ (r=0.96), but insufficient ammonium was present to totally neutralize the aerosol. In Beijing, SO42−, NO3 and NH4+ were also the dominant ionic species, constituting 44%, 25% and 16% of the total mass of water-soluble ions, respectively. Local SO2 emissions were an important source of SO42− in the winter since SO42− was correlated with SO2 (r=0.83). The low-mass SO42−/SO2 ratio (0.27) during winter, which had low humidity, suggests that gas-phase oxidation of SO2 was a major route of sulfate formation. In the summer, however, much higher mass ratios of SO42−/SO2 (5.6) were observed and were ascribed to in-cloud sulfate formation. The annual average ratio of NO3/SO42− was 0.4 and 0.6 in Shanghai and in Beijing, respectively, suggesting that stationary emissions were still a dominant source in these two cities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号