首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organic pollutants (OPs) present in compostable organic residues can be recovered in the final composts leading to environmental impacts related to their use in agriculture. However, the composting process may contribute to their partial dissipation that is classically evaluated through the concentration decrease in extractable OPs, without identification of the responsible mechanisms as mineralization or stabilization of OP as non-extractable residues (NER) or bound residues. The dissipation of four (14)C-labeled OPs (fluoranthene; 4-n-nonylphenol, NP; sodium linear dodecylbenzene sulfonate, LAS; glyphosate) was assessed during composting of sewage sludge and green waste. The dissipation of LAS largely resulted from its mineralization (51% of initial LAS), whereas mineralization was intermediate for NP (29%) and glyphosate (24%), and negligible for fluoranthene. The NER pathway mostly concerned NP and glyphosate, with 45% and 37% of the recovered (14)C being found as NER at the end of composting, respectively. In the final composts, the proportions of water soluble residues of OPs considered as readily available were <11% of recovered (14)C-OPs. However, most fluoranthene remained solvent extractable (72%) and potentially available, whereas only 18% of glyphosate and less than 7% of both NP and LAS remained solvent extractable in the final compost.  相似文献   

2.
In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl2 aqueous medium at 25 degrees C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L(-1), produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K(doc), has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment.  相似文献   

3.
Dry deposition of semi-volatile organic compounds (SVOC) is not currently treated in most chemical transport models of air quality and this omission has been identified as a possible major source of uncertainty. The effect of dry deposition of SVOC on the concentration of secondary organic aerosols (SOA) is investigated in summertime with the chemical transport model CHIMERE that simulates SOA concentrations by means of molecular SOA surrogate species. Omitting dry deposition could overestimate SOA concentrations by as much as 50%. This overestimation is larger during nighttime due to higher relative humidity.  相似文献   

4.
Control of hazardous organic micropollutants is a challenging water quality issue. Dissolved humic organic matter (DOM) isolated from oxyhumolite coal mined in Bohemia was investigated as a complexation agent to remove polycyclic aromatic hydrocarbons (PAHs) and functionalized phenols from water by a two-stage process involving complexation and flocculation. After the formation of humic-contaminant complexes, ferric salts were added resulting in the precipitation and flocculation of the DOM and the associated pollutants. Flocculation experiments with ferric ion coagulants indicated that precipitation of oxyhumolite DOM together with the complexed contaminants occurred at lower ferric ion concentrations than with the reference DOM in acidic environments (pH approximately 3.5). The complexation-flocculation removal rates for non-reactive PAHs characterized by small localization energies of pi-electrons correlated well with the complexation constants. On the other hand, the combined complexation-flocculation removal rates for activated PAHs including trans-stilbene, anthracene and 9-methyl anthracene, as well as functionalized polar phenols, were higher than predicted from the complexation coefficients. Methodological studies revealed for the first time that the ferric ion coagulant contributed to enhanced removal rates, most probably due to ferric ion-catalyzed pollutant degradation resulting in oxidized products.  相似文献   

5.
Changes in soil organic matter chemical properties after organic amendments   总被引:1,自引:0,他引:1  
Sebastia J  Labanowski J  Lamy I 《Chemosphere》2007,68(7):1245-1253
Organic inputs are used to improve soil physical and chemical properties, but the corresponding changes in soil organic matter (SOM) chemical properties are not well known. In this study, we compared some characteristics of the SOM of a soil receiving either no organic inputs, or two different amendments during 15 years (straw or conifer compost). Quantities of organic carbon and C/N values were determined on particle size fractions after physical soil fractionation to localize changes due to amendments. Contents in reactive functional groups, acid-base properties and copper binding affinities were determined by titration experiments for the soluble fraction of SOM: the fulvic acid fraction (FA). Data of FA extracted from the bulk soil were compared to data of FA extracted from the <20 microm size fraction with the help of either a discrete or a continuous model (fit of data with FITEQL or NICA, respectively). Copper binding characteristics of FA extracted from the <20 microm size fraction did not change significantly after organic inputs, while those of FA extracted from the bulk organic-amended soils were found different from the ones with no amendment. Minor effects observed in the finer soil fractions were ascribed to their low turn-over of organic carbon and/or to a greater homogeneity in the nature of the organic carbon entering these fractions. Our results show major chemical changes in coarser soil organic fractions after organic amendments.  相似文献   

6.
Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils.  相似文献   

7.
The ratio of organic mass (OM) to organic carbon (OC) in PM(2.5) aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM(2.5) mass and chemical constituents other than OC (mass balance) in IMPROVE samples from 1988 to 2003. Archived IMPROVE filters from five IMPROVE sites were extracted with dichloromethane (DCM), acetone and water. The extract residues were weighed to determine OM and analyzed for OC by thermal optical reflectance (TOR). On average, successive extracts of DCM, acetone, and water contained 64%, 21%, and 15%, respectively, of the extractable OC, respectively. On average, the non-blank-corrected recovery of the OC initially measured in these samples by TOR was 115+/-42%. OM/OC ratios from the combined DCM and acetone extracts averaged 1.92 and ranged from 1.58 at Indian Gardens, AZ in the Grand Canyon to 2.58 at Mount Rainier, WA. The average OM/OC ratio determined by mass balance was 2.07 across the IMPROVE network. The sensitivity of this ratio to assumptions concerning sulfate neutralization, water uptake by hygroscopic species, soil mass, and nitrate volatilization were evaluated. These results suggest that the value of 1.4 for the OM/OC ratio commonly used for mass and light extinction reconstruction in IMPROVE is too low.  相似文献   

8.
This study was undertaken to determine the impact of the organic complex concentration on the adsorption of herbicide (acetochlor) at the surface of the organic modified montmorillonite. In this work, natural montmorillonite from Bogovina (Boljevac municipality, Serbia) was used for organic modification. Cation-exchange capacity of this montmorillonite was determined using a methylene blue method (86 mmol/100 g of clay). Montmorillonite has been modified first with NaCl and then with hexadecyltrimethylammonium bromide (HDTMA-bromide) organic complex. Saturation of cation exchange capacity (CEC) was 50%, 100%, and 150%. Changes in the properties of the inorganic and organic montmorillonite have been examined using the X-ray diffraction, Fourier transform infrared spectroscopy, and batch equilibrium method. Montmorillonite modified with HDTMA-bromide demonstrated higher uptake of the herbicide, compared to the inorganic montmorillonite. Comparing the values Freundlich coefficients in batch equilibrium method, it can be seen that the adsorption of acetochlor decreased in the series: 0.5 CEC HM > 1 CEC HM > 1.5 CEC HM > NaM.  相似文献   

9.
10.
有机粘土矿物对水中低浓度菲的吸附性能和机理   总被引:2,自引:0,他引:2  
刘娜  陈畅曙  付云娜 《环境污染与防治》2006,28(11):811-813,830
分别选用十六烷三甲基溴化铵(HDTMA-Br)、四甲基溴化铵(TMA-Br)、聚乙二醇(PEG)表面活性剂改性天然粘土矿物,研究其对水中低浓度多环芳烃类难降解有机物菲的吸附性能和机理,并讨论了有机粘土的用量对吸附菲的性能的影响,验证了有机粘土矿物吸附菲后的稳定性.3种有机粘土矿物对菲的吸附等温线均呈中凹型,表现为分配系数(Kp)逐渐增大,表明吸附是分配作用和溶剂化效应共同作用的结果.根据Kp及土样有机碳含量(foc)所得的经有机碳归一化的分配系数(Koc)基本为常数,远远高于天然土壤/沉积物的Koc.在相同实验条件下,3种有机粘土矿物中HDTMA改性粘土矿物对菲的吸附性能最强,PEG改性粘土矿物次之,TMA改性粘土矿物最差.  相似文献   

11.
The contributions of organic matter and the mineral surface to the overall sorption of six nonpolar neutral organic compounds (1,2,4-trichlorobenzene, 1,4-dichlorobenzene, chlorobenzene, m-xylene, toluene, benzene) by five humic acid (HA)-coated sands with different fractions of organic carbon (f(oc)) ranging from 0.024% to 0.154% were evaluated on the basis of measured data and four different sorption models. Sorption of all six sorbates to both uncoated and heated sands was nearly linear due to the coverage of hydrophilic mineral surface with the ordered vicinal water region. Sorption of all six sorbates to the HA-coated sands was also essentially linear, and resulted from a combination of sorption to both organic matter and the mineral surface, with the dominance of either contribution depending on the properties of the sorbents (e.g., f(oc)) and the sorbates (e.g., K(ow)). A proposed two-component model for sorption including blocking effect was appropriate for quantifying the contributions of organic matter and the mineral surface to the overall sorption. However, conventional sorption models considering the contributions of both organic matter and the mineral surface provided essentially as good agreement between predicted and measured distribution coefficients as the more complicated, two-component model for sorption that takes into account mineral surface blocking by HA.  相似文献   

12.
Even though it is well established that soil C content is the primary determinant of the sorption affinity of soils for non-ionic compounds, it is also clear that organic carbon-normalized sorption coefficients (K(OC)) vary considerably between soils. Two factors that may contribute to K(OC) variability are variations in organic matter chemistry between soils and interactions between organic matter and soil minerals. Here, we quantify these effects for two non-ionic sorbates-diuron and phenanthrene. The effect of organic matter-mineral interactions were evaluated by comparing K(OC) for demineralized (HF-treated) soils, with K(OC) for the corresponding whole soils. For diuron and phenanthrene, average ratios of K(OC) of the HF-treated soils to K(OC) of the whole soils were 2.5 and 2.3, respectively, indicating a substantial depression of K(OC) due to the presence of minerals in the whole soils. The effect of organic matter chemistry was determined by correlating K(OC) against distributions of C types determined using solid-state (13)C NMR spectroscopy. For diuron, K(OC) was positively correlated with aryl C and negatively correlated with O-alkyl C, for both whole and HF-treated soils, whereas for phenanthrene, these correlations were only present for the HF-treated soils. We suggest that the lack of a clear effect of organic matter chemistry on whole soil K(OC) for phenanthrene is due to an over-riding influence of organic matter-mineral interactions in this case. This hypothesis is supported by a correlation between the increase in K(OC) on HF-treatment and the soil clay content for phenanthrene, but not for diuron.  相似文献   

13.
Horvath AL 《Chemosphere》2001,44(4):897-905
The normal boiling points of a number of halogenated organic compounds have been compiled from experimental measurements over three decades. Some of these chemicals have not been reported in the literature. The substances listed are halogenated aliphatic hydrocarbons, halogenated aliphatic ethers, halogenated ring (cyclic) hydrocarbons and other related compounds.  相似文献   

14.
Concentrations of elemental carbon (EC), organic carbon (OC), and 33 organic source markers (12 alkanes, 18 polycyclic aromatic hydrocarbons and ketones, and 3 hopanes) are reported near a highway in Raleigh, NC with an annual average daily traffic count of approximately 125,000 vehicles. Daily samples (24-h) were collected at two locations, one approximately 10 m and the other 275 m perpendicular from the road. Concentrations of OC were similar between near (mean = 7.6 μg m?3) and far (8.0 μg m?3) locations, but concentrations of most organic species at the near site were between 1.5 and 2 times higher than those at the far site.  相似文献   

15.
Hair-biomonitoring of organic pollutants   总被引:1,自引:0,他引:1  
Schramm KW 《Chemosphere》2008,72(8):1103-1111
This report reviews past research on hair analysis development for organic contaminants from the point of view of analytical procedures, successful applications and their limitations. For the past 20 years, hair analysis for organic pollutants has received more and more attention, since it is non-invasive, easily available and ethically not prioritized. New methods such as SFE, SPME and INAA have been developed to make the analysis more accurate and reliable. Furthermore, the correlation of contamination levels between hair samples and ambient air or internal tissues has been found by hair analysis and short-term and long-term exposure assessment in combination. However, there are still some limitations of hair analysis to be a validated risk assessment tool for many compounds. Some limitations had been of the past, some have not been fully investigated and need still further study. In this way, hair analysis can be the key to successfully biomonitor organic contaminations.  相似文献   

16.
Sorption of hydrophobic organic compounds onto organoclays   总被引:2,自引:0,他引:2  
Lee SY  Kim SJ  Chung SY  Jeong CH 《Chemosphere》2004,55(5):781-785
The behavior and fate of nonionic hydrophobic organic compounds (HOCs) in the environment are mainly controlled by their interactions with various components of soils and sediments. Due to their large surface area and abundance in many soils, smectites may greatly influence the fate and transport of the contaminants in the environment. In our experiments, HOC sorption by hexadecyltrimethylammonium (HDTMA)-modified smectite linearly increased with the amount of HDTMA added to the clay. However, tetramethylammonium (TMA)- and dodecyltrimethylammonium (DTMA)-modified smectites showed not only inferiority in their sorption of HOC compared with the HDTMA-smectite, but also a partially decreased HOC sorption at specific surfactant loading levels. This means that the sorption of organoclays for organic contaminants was significantly influenced by the amount and size of the surfactants added on the clay. In addition, it seems that the interlayer structure (e.g., pore size) formed at each surfactant loading level plays an important role to adsorb HOC in different amount.  相似文献   

17.
To find a better composting process with low greenhouse gas emission and high humus production, the effect of adding kitchen waste on reduction and humification of organic matter during straw composting was studied. Three processes were compared, consisting of different ratios of straw and kitchen waste (1:2, 1:1, and 2:1). At four time points over a 62-d incubation, the reduction and humification of compost was evaluated by measuring the total mass, carbon content, and humic material content of the compost. Treatment 1 (straw/kitchen waste ratio of 1:2) reduced the total mass of compost the most. Treatment 2 (straw/kitchen waste ratio of 1:1) reduced the total carbon content the most, reflecting the highest emission of greenhouse gas. Treatment 3 produced the most humic acid material and released the lowest amount of carbon. Hence, from the point of view of reducing greenhouse gas emissions and increasing stable organic matter such as humus and humic acid during composting, treatment #3 was optimal. The three treatments resulted in significant differences in microbial biomass and enzyme activity during composting. The highest amount of active microbial biomass was associated with the largest reduction in compost mass (treatment 1). Higher proportions of straw (treatments 2 and 3), which contains more lignin, were associated with greater β-glycosidase activity, which may generate more humus that can improve soil quality. Dehydrogenase activity seemed to be the most important microbial factor in organic carbon catabolism or humification.  相似文献   

18.
A new approach is developed to predict the volatilization loss of the pure liquid and the volatilization rates of organic solutes with different Henry's law constants (H) under wind speed. The tested compounds include eight volatile organic compounds for pure liquid and the forty-one organic solutes with different H compounds are divided into three groups that span seven H orders. The wind speed is set from 0 to 6.0 ms?1. A characteristic parameter ε was established to estimate volatilization loss of pure organic compounds. The mass transfer coefficient (KOL) ratios of the organic solutes, under both wind speed and still conditions, are applied to describe the volatilization characteristics of the selected solutes. The curve profile for KOL ratios and ε values relative to the selected wind speed can be divided into two stages, the sharp-rise stage and the stable-linearity stage. The critical finding is the ε values for the different organic compounds under a specific wind speed approach a constant. The changes in the curve profile of the KOL ratios are similar to the ε values of the pure organic compounds. It is also found the relatively lower H compounds exhibit a sensitive wind effect on the KOL ratios. The KOL ratios of the relatively higher H compounds indicate a similar linear increase with the increasing wind speed in the two stages. Accordingly, concentrations of the organic compounds at the interface are thought to the primary factor. The obtained results could be a good reference to estimate volatilization loss of the organic solutes or the organic solvents under different wind speed conditions.  相似文献   

19.
Microwave plasma conversion of volatile organic compounds   总被引:1,自引:0,他引:1  
A microwave-induced, steam/Ar/O2, plasma "torch" was operated at atmospheric pressure to determine the feasibility of destroying volatile organic compounds (VOCs) of concern. The plasma process can be coupled with adsorbent technology by providing steam as the fluid carrier for desorbing the VOCs from an adsorbent. Hence, N2 can be excluded by using a relatively inexpensive carrier gas, and thermal formation of oxides of nitrogen (NOx) is avoided in the plasma. The objectives of the study were to evaluate the technical feasibility of destroying VOCs from gas streams by using a commercially available microwave plasma torch and to examine whether significant byproducts were produced. Trichloroethene (TCE) and toluene (TOL) were added as representative VOCs of interest to a flow that contained Ar as a carrier gas in addition to O2 and steam. The O2 was necessary to ensure that undesirable byproducts were not formed in the process. Microwave power applied at 500-600 W was found to be sufficient to achieve the destruction of the test compounds, down to the detection limits of the gas chromatograph that was used in the analysis. Samples of the postmicrowave gases were collected on sorbent tubes for the analysis of dioxins and other byproducts. No hazardous byproducts were detected when sufficient O2 was added to the flow. The destruction efficiency at a fixed microwave power improved with the addition of steam to the flow that passed through the torch.  相似文献   

20.
Yu Z  Huang W  Song J  Qian Y  Peng P 《Chemosphere》2006,65(11):2493-2501
The objective of this study was to quantify sorption properties for kerogen/black carbon (BC)-bearing sediments. Single-solute sorption isotherms were measured for five pristine marine sediments using phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,4-dichlorobenzene as the sorbates. The results showed that the sorption isotherms were nonlinear and that the organic carbon normalized single point KOC values were comparable to those reported in the literature for the purified keorgen and BC, but are much higher than the data reported for HA and kerogen/BC-containing terrestrial soils and sediments. It is likely that koergen and BC associated with these pristine marine sediments may not be encapsulated with humic acids or Fe and Mn oxides and hydroxides as often do in terrestrial soils and sediments. As a result, they may be fully accessible to sorbing molecules, exhibiting higher sorption capacities. The study suggests that competition from background HOCs and reduced accessibility when kerogen and BC are associated with terrestrial sediments may dramatically increase variability of sorption reactivities of geosorbents. Such variability may lead to large uncertainties in the prediction of sorption from the contents of kerogen and/or BC along with TOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号